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Abstract— Large Language Models (LLMs) and generative AI 

(GenAI) systems, such as ChatGPT, Claude, Gemini, LLaMA, 

Copilot, Stable Diffusion by OpenAI, Anthropic, Google, Meta, 

Microsoft, Stability AI, respectively, are revolutionizing 

cybersecurity, enabling both automated defense and sophisticated 

attacks. These technologies power real-time threat detection, phishing 

defense, secure code generation, and vulnerability exploitation at 

unprecedented scales. LLM-generated malware alone is projected to 

account for 50% of detected threats in 2025, up from just 2% in 2021, 

emphasizing the need for next-generation security frameworks. 

This paper presents a comprehensive survey of the beneficial and 

malicious applications of LLMs in cybersecurity, including zero-day 

detection, DevSecOps, federated learning, synthetic content analysis, 

and explainable AI (XAI). Drawing on a review of over 70 academic 

papers, industry reports, and technical documents, this work 

synthesizes insights from real-world case studies across platforms like 

Google Play Protect, Microsoft Defender, Amazon Web Services 

(AWS), Apple’s App Store, OpenAI Plugin Stores, Hugging Face 

Spaces, and GitHub, alongside emerging initiatives like the SAFE 

Framework and AI-driven anomaly detection.  

We conclude with practical recommendations for responsible and 

transparent LLM deployment, including model watermarking, 

adversarial defense, and cross-industry collaboration—setting a new 

benchmark for rigorous, holistic cybersecurity research at the 

intersection of AI and threat defense—and offering a roadmap for 

secure, scalable LLM systems that serves as a critical reference for 

researchers, engineers, and security leaders navigating the complex 

challenges of AI-driven cybersecurity.  
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I. INTRODUCTION  

The rapid evolution of artificial intelligence has placed Large 
Language Models (LLMs) and generative AI at the forefront of 
software innovation and cybersecurity transformation. Originally 
developed to enhance natural language understanding, LLMs such as 
GPT-4, PaLM, and Gemini are now widely adopted across industries to 
automate code generation, accelerate development workflows, and 
enable intelligent decision-making [1]–[3]. However, this widespread 
adoption has created a double-edged sword: LLMs empower 
defenders—especially platform administrators like Google Play, Apple 
App Store, and other enterprise app platforms—to perform static code 
scanning, automate threat detection, and improve code quality in real 
time. Yet simultaneously, those same models are exploited by attackers 
to generate malware, obfuscate code, and discover vulnerabilities at 
scale. This duality introduces complex security and governance 

challenges, underscoring the urgent need for systematic analysis, 
responsible deployment, and robust defensive frameworks [4]. 

This paper presents a comprehensive survey of both the risks and 
opportunities associated with LLMs in cybersecurity. We explore their 
dual-use nature, recent industry and academic advances, and how both 
defenders and adversaries leverage these models for tasks such as code 
generation, malware design, zero-day detection, and DevSecOps, 
supported by architectural comparisons, benchmark studies, and cross-
industry case examples. To guide the reader, the paper is structured as 
follows: Section II lays the foundational background by reviewing 
existing literature on the evolution, capabilities, and early governance 
efforts concerning LLMs. Section III provides an in-depth analysis of 
LLM applicability in security, detailing their dual-use potential, 
specific threat vectors like AI-generated malware, the role of 
explainability, and emerging defensive strategies. Building upon this 
analysis, Section IV outlines key directions for future research essential 
for advancing the secure use of LLMs. The paper concludes in Section 
V, which summarizes the findings and proposes a governance roadmap 
rooted in explainability, privacy-by-design, federated learning, and 
compliance. By aligning defensive innovation with emerging safety 
standards, this paper contributes a timely framework for navigating the 
rising complexity of LLM-powered cybersecurity ecosystems. 

II. BACKGROUND AND LITERATURE REVIEW 

A. Evolution and Capabilities of LLMs 

Large Language Models (LLMs) have evolved rapidly from their 
initial applications in natural language translation and generation to 
highly capable systems supporting complex software engineering tasks. 
Models such as GPT-4 and PaLM now perform code generation, 
refactoring, debugging, and even formal verification with increasing 
accuracy and fluency [1], [5]. These advancements are enabled by 
scaling transformer architectures and training on diverse programming 
and natural language corpora. Recent research from OpenAI and 
Google demonstrates how LLMs can integrate into full development 
pipelines, assisting with test case creation, API documentation, and 
dynamic bug resolution [6]–[8]. 

B. Security Risks and Early Governance Efforts 

The dual-use nature of LLMs has raised significant security 
concerns. On one hand, they can support code auditing and threat 
detection; on the other, they can generate obfuscated or insecure code, 
or be weaponized for malicious purposes. Prior work has emphasized 
the need for proactive safeguards, such as Brundage et al.'s 
recommendations on structured red teaming and audit trails, and the 
European Union’s Artificial Intelligence Act, which mandates risk 
assessments and transparency reports for high-impact models [9], [10]. 
These frameworks aim to mitigate misuse while supporting responsible 
innovation. 

C. Ethics and Governance of Dual-Use LLMs 

Integrating LLMs into CI/CD pipelines automates crucial security 
tasks such as code review, threat detection, and compliance 
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enforcement. GitLab and Azure DevOps showcase how GPT based 
tools can enable real-time security hardening and policy enforcement 
[11], [12].  

While the EU AI Act and the US NIST AI RMF represent 
significant strides, the global governance landscape for LLMs in 
cybersecurity remains dynamic, with other major technological regions 
developing their own distinct approaches. For instance, countries in 
Asia, such as China, Japan, South Korea, and Singapore, are actively 
formulating AI regulations and ethical guidelines that reflect their 
unique priorities. Understanding these varied international perspectives 
and fostering dialogue towards greater regulatory interoperability will 
be crucial for addressing the borderless nature of cyber threats and 
ensuring a globally coordinated response to the risks posed by dual-use 
AI [9]-[12]. 

D. LLMs in DevSecOps Automation 

Empirical studies of GitHub Copilot and Microsoft Security 
Copilot illustrate how AI augmented developers are more efficient in 
detecting and resolving security flaws. These tools not only enhance 
productivity but also reduce the probability of vulnerabilities slipping 
into production code [13], [14]. 

E. Human-AI Collaboration for Secure Development 

An important facet of human-AI collaboration in secure 
development involves leveraging AI models to augment human 
capabilities in threat detection. For instance, LLMs like VulBERTa are 
being fine-tuned to identify zero day vulnerabilities through pattern 
recognition in source code. These models outperform traditional static 
analyzers, significantly improving detection timelines and precision in 
identifying new attack vectors [15]. 

F. Privacy-Aware Deployment of LLMs via Federated Learning 

Privacy preserving LLM deployment strategies are increasingly 
relevant. Federated learning allows training across distributed devices 
without centralizing data, aligning with laws like GDPR. Kairouz et al. 
and Bonawitz et al. have demonstrated that these frameworks preserve 
privacy while maintaining model utility [16], [17]. 

G. Explainability and Trust in AI Driven Defense 

The adoption of LLMs in automated security systems demands 
transparency. Explainable AI (XAI) methods like SHAP and LIME 
have been customized to make LLM based vulnerability classifications 
interpretable. These models help developers and analysts understand 
the rationale behind predictions, supporting auditability and compliance 
[18], [19]. 

H. Adversarial Attacks and Model Vulnerabilities 

The integration of LLMs into security critical domains has exposed 
them to sophisticated adversarial attacks. Carlini et al. highlighted how 
training data could be extracted from LLMs, undermining 
confidentiality [8]. Wallace et al. demonstrated that prompt injection 
and adversarial fine tuning can manipulate LLM outputs, evading 
content filters. Recent work by Jia et al. organized a global competition 
revealing how LLMs can be tricked into generating offensive content 
and misinformation, emphasizing the need for rigorous adversarial 
testing frameworks [20]. 

III. ANALYSIS OF LLM APPLICABILITY IN SECURITY 

As LLMs become deeply embedded in software development and 
cybersecurity pipelines, their dual-use potential has triggered increasing 
scrutiny. A growing body of research has documented how these 
models can unintentionally or deliberately produce insecure code, 
including cryptographic flaws, SQL injection vectors, and XSS 
vulnerabilities [21]–[23]. More alarmingly, the accessibility of LLMs 
has democratized the creation of deceptive content—enabling non-
experts and malicious actors alike to generate phishing apps, 

polymorphic malware, and social engineering scripts at scale [24]–[26]. 
These developments reflect not isolated failures but systemic risks 
introduced by generative models when deployed without sufficient 
constraints. This section analyzes such risks through three lenses: (1) 
the emerging threat landscape shaped by misuse and amateur error, (2) 
industry-led defense strategies to mitigate LLM-enabled attacks, and 
(3) the broader governance and technical challenges that complicate 
safe deployment. 

A. Amateur Developers and Security Risks 

While LLMs empower rapid software creation, they have also 
unintentionally enabled a wave of insecure development by amateur 
coders. These models lower technical barriers to entry, allowing 
individuals with minimal security training to generate functional code 
quickly. However, this ease often comes at the cost of safety. Studies 
have shown that inexperienced developers frequently incorporate 
LLM-generated snippets directly into applications without validating 
correctness, context, or security implications [27], [28]. As a result, 
common vulnerabilities such as improper authentication, insecure API 
usage, and unsafe cryptographic practices proliferate in production 
software. 

This trend is particularly concerning in open-source and mobile app 
ecosystems, where low-friction publication processes allow insecure 
code to reach wide audiences. Unlike deliberate attacks, these security 
flaws emerge from structural gaps—lack of tooling, review, and 
awareness—highlighting the need for LLM-integrated guardrails that 
can proactively flag unsafe patterns for novice users. While amateur 
misuse stems from lack of expertise, the deliberate exploitation of 
LLMs by adversaries reveals a more calculated—and scalable—
weaponization of generative AI. 

B. Malicious Actors Leveraging LLMs 

In contrast to accidental misuse by amateurs, malicious actors are 
leveraging LLMs as force multipliers for intentional cyberattacks. 
These adversaries use generative models to automate large-scale 
creation of malware, phishing payloads, ransomware variants, and code 
obfuscation strategies. Unlike conventional malware authors who 
required domain expertise, attackers can now prompt LLMs to output 
malicious scripts with minimal effort—dramatically accelerating 
development cycles. 

Industry reports indicate a sharp escalation in LLM-facilitated 
threat activity, with LLM-generated or assisted malware constituting a 
significant share of all new threats in 2025 [29]–[31]. Attackers further 
exploit LLMs to bypass static filters by generating code that mutates 
slightly on each iteration—evading signature-based detection systems. 
This reflects a paradigm shift in threat scalability: what was once 
human-limited is now AI-augmented, enabling adversaries to operate at 
industrial scale. 

C. Statistical Overview of LLM Related Malware 

The proliferation of LLM technologies has corresponded with a 
measurable increase in their exploitation by malicious actors. Recent 
cybersecurity reports reveal a sharp upward trend in malware generated 
or assisted by LLMs, raising concerns about automated threat scaling 
and democratized access to advanced attack tools. Table 1 presents a 
year-over-year breakdown of total malware cases and the proportion 
attributed to LLM-generated threats between 2021 and 2025 [32]. 

Table 1: Growth of LLM-Generated Malware (2021–2025) 

Year 
Annual Malware 

Detections (M) 

LLM-Assisted 

Malware (%) 

LLM-Assisted 

Malware (M) 

2021 83.3 2 1.666 

2022 104.5 5 5.23 

2023 150.0 15 22.5 

2024 184.3 30 55.29 

2025 221.2 50 110.6 
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To quantify the accelerating impact of LLMs on the threat 
landscape, we analyzed data from Cybersecurity Ventures covering 
malware trends from 2021 to 2025. As shown in Figure 1, total 
malware cases have steadily increased over this period. More notably, 
the share of malware attributed to LLMs has surged—from just 2% in 
2021 to a projected 50% in 2025. This trend highlights a fundamental 
shift: LLMs are no longer fringe tools for experimentation, but are now 
actively shaping the scale, speed, and sophistication of cyber threats. 
The sharp growth curve underscores the need for proactive defense 
mechanisms that account for AI-assisted attack vectors and evolving 
adversarial capabilities. 

 

 

Figure 1 Estimated annual global malware detections with LLM-assisted 
contribution (2021–2025). Stacked bars show total malware cases, with the red 
portion representing LLM-assisted threats. The black line highlights the rapid 
growth of AI-driven malware, rising from 2% to 50% of all detections over the five-
year period. 

D. Defensive Utilization of LLMs in Mobile App Security 

In response to rising AI-powered threats, mobile platform providers 
are embedding LLMs directly into their security workflows. One of the 
most effective use cases is automated code review—where LLMs 
augment traditional static analyzers by identifying logic flaws, unusual 
API usage, or obfuscated payloads that escape signature-based 
detection. 

Google’s Gemini, for instance, plays a pivotal role in powering Play 
Protect, which scans millions of Android applications daily for 
malware, policy violations, and suspicious behaviors. By using LLMs, 
Play Protect has reduced both false positives and time-to-detection, 
allowing for proactive app ecosystem defense at unprecedented scale 
[33]–[36]. 

These use cases demonstrate how LLMs can shift mobile app 
security from reactive filtering to intelligent pre-deployment screening, 
flagging issues before users ever download an app. However, as 
defensive applications of LLMs grow more powerful, they also inherit 
risks such as overfitting, bias, or exploitability—making explainability 
and continuous retraining essential. 

E. Industry Case Studies: Leveraging LLMs for Cyber Defense 

As threats fueled by LLMs escalate, leading technology companies 
are responding by deploying their own LLM-powered tools to reinforce 
digital defenses. These platforms integrate LLMs into core security 
operations such as code review, static analysis, compliance auditing, 
and threat intelligence. Each organization tailors its LLM deployment 
strategy to align with its security priorities, infrastructure, and 
customer-facing services [36]–[40]. Table 2 summarizes several of 
these leading companies and their applications of LLM technology for 
cyber defense. 

These LLM-powered systems represent a shift from reactive to 
proactive security postures. For instance, Google's Gemini underpins 
Play Protect’s live threat detection engine, capable of analyzing 
millions of apps for suspicious behavior in real time. Microsoft's 

Security Copilot assists developers and analysts by flagging unsafe 
code patterns and generating remediation steps. Amazon’s 
CodeWhisperer is deeply embedded in IDEs, helping developers 
identify insecure code at the moment of creation. 

By embedding LLMs into their security stacks, these organizations 
are not only protecting their own platforms but also setting new industry 
standards for AI-augmented cybersecurity. However, the same 
capabilities—if left unchecked or open-sourced without safeguards—
can empower adversaries, reinforcing the paper’s core thesis: LLMs are 
a powerful but inherently dual-use technology. 

 

Table 2: Leading Companies Leveraging LLMs For Security 

Company LLM Technology Application 

Google Gemini Malware Detection, Static Analysis 

Microsoft GPT-4 Security Copilot, Code Review 

Amazon CodeWhisperer Vulnerability Detection 

IBM Watsonx Compliance & Risk Management 

Palantir AIP Threat Hunting & Behavioral Analysis 
 

F. Bias and Fairness Issues in LLM-Based Security Systems 

While LLMs offer powerful advantages in automating security 
analysis, they also introduce systemic risks related to bias and fairness. 
These models are trained on massive datasets that often reflect 
historical imbalances, implicit stereotypes, or geographic skew—issues 
that can propagate into downstream security decisions. In high-stakes 
environments such as app store moderation, code review, or 
vulnerability triage, biased outputs can result in misclassifications, 
disproportionately affecting certain developer communities or 
categories of software [41], [42]. 

For example, security LLMs trained primarily on English-language 
or Western-centric data may struggle to accurately interpret or evaluate 
apps developed in other locales, leading to higher false positive rates. 
Similarly, bias in labeling training data (e.g., which code patterns were 
marked as malicious or benign) can skew the model’s risk assessments, 
potentially flagging harmless applications as threats or overlooking real 
vulnerabilities in less represented codebases. 

These challenges illustrate yet another edge of the sword: even 
defensive LLM systems can inadvertently create harm if deployed 
without fairness audits, dataset transparency, and debiasing techniques. 
As LLMs continue to be integrated into security workflows, algorithmic 
accountability must become a core design principle, not an afterthought. 

G. Scalability Concerns in LLM-Based Security Systems 

As LLMs are increasingly integrated into security pipelines, scaling 
these models to handle production-level traffic—especially in global 
platforms like app stores or CI/CD environments—presents major 
technical and operational challenges. Unlike isolated developer tools or 
research prototypes, real-world deployment demands low-latency 
inference, cost-effective infrastructure, and high throughput across 
diverse languages and architectures [43]. 

For example, scanning millions of apps in Google Play or Apple’s 
App Store for policy violations, malware, or misconfigurations using 
LLMs requires robust resource allocation strategies, distributed model 
serving, and dynamic workload balancing. The complexity compounds 
further when real-time threat detection is needed—where every 
inference must complete within milliseconds, and models must be 
resilient to edge cases and adversarial inputs. 

Additionally, maintaining consistent LLM behavior across regions 
with different regulations (e.g., GDPR in the EU, CCPA in California) 
adds operational overhead. Model fine-tuning or rule enforcement may 
need to be localized, increasing the burden of deployment and 
monitoring. 
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This raises a critical tension: LLMs are powerful, but not trivially 
scalable. Their integration into global security infrastructures must be 
carefully engineered to avoid performance bottlenecks, regional 
inconsistencies, and unexpected failure modes—especially as 
adversaries attempt to exploit system blind spots. 

H. Regulatory Compliance and Privacy Constraints 

The deployment of LLMs in security workflows introduces 
complex compliance challenges, particularly under data protection 
frameworks such as the General Data Protection Regulation (GDPR) 
and the California Consumer Privacy Act (CCPA) [44], [45]. These 
regulations impose strict requirements around data minimization, user 
consent, data residency, and the right to explanation—all of which 
impact how LLMs can be trained, fine-tuned, and applied to sensitive 
user content. 

For example, static code scans or behavioral analysis performed by 
LLMs may inadvertently process personally identifiable information 
(PII) or usage metadata, triggering legal obligations. Federated learning 
and on-device inference offer promising paths forward, but adopting 
privacy-preserving techniques at scale remains technically demanding 
and legally ambiguous. 

Moreover, transparency requirements—such as explaining how a 
model reached a decision or why a threat was flagged—can be difficult 
to fulfill given the black-box nature of many large transformer models. 
Without rigorous documentation, organizations risk regulatory 
noncompliance, reputational harm, or unintended discriminatory 
outcomes. 

To truly harness LLMs for security in regulated environments, 
defenders must embed privacy-by-design principles into every stage of 
model development and deployment, while simultaneously investing in 
robust auditability and consent-driven architectures. 

I. Explainability and Trust in AI-Driven Defense 

As LLMs take on increasingly autonomous roles in cybersecurity—
classifying vulnerabilities, triaging threats, or flagging anomalies—the 
need for explainable artificial intelligence (XAI) has become 
paramount. Without transparency into how these decisions are made, 
stakeholders may lose confidence in AI-driven defense systems, 
especially when they impact compliance, reputation, or user rights. 

To bridge this gap, researchers have adapted traditional XAI 
techniques such as SHAP and LIME to LLMs, enabling visibility into 
influential tokens, attention patterns, and decision pathways [52]. These 
interpretations not only enhance trust but also help security analysts 
validate model behavior, identify edge-case failures, and fine-tune 
thresholds for deployment. The major categories of explainability tools 
and their use cases in security pipelines are summarized in Figure 2. 

 

 
Figure 2. Categorization of explainability tools used in LLM-driven 

cybersecurity systems. Each pair highlights a class of explainability objective—
ranging from model-level interpretation to governance—and maps it to real-world 
tools such as SHAP, CySecBench, and AI model cards. These tools support 
transparency, auditability, and trust across the security pipeline, helping address 
risks introduced by the opaque nature of large language models. 

 

Recent work has also led to the creation of domain-specific 
benchmarks for evaluating explainability in security contexts. One such 

effort, CySecBench by Mishra et al. [53], provides over 12,000 
cybersecurity-focused prompts categorized by attack type, used to test 
how well LLMs maintain interpretability under adversarial pressure. 
Through prompt obfuscation and targeted jailbreaking scenarios, the 
benchmark has revealed varying degrees of robustness and 
transparency among leading models like ChatGPT, Gemini, and 
Claude—underscoring the urgent need for explainability tools tailored 
to high-risk applications. 

In educational and industrial settings, tools like CyberMentor [54] 
demonstrate how explainable AI can support cybersecurity training by 
offering personalized, interpretable feedback. By leveraging Retrieval-
Augmented Generation (RAG) and agentic workflows, these systems 
teach not just what the threat is—but why it matters and how it works. 

More broadly, the dual-use nature of LLMs has prompted calls for 
ethical auditing frameworks where explainability becomes a central 
pillar of security governance. Strategies such as the Cyber Kill Chain 
(CKC) and AI model cards are being used to document vulnerabilities, 
decision logic, and misuse potential in a structured, auditable format. 
As emphasized by Barrett et al. [55] and Gupta et al. [56], explainability 
is not merely a UX feature—it’s essential infrastructure for regulatory 
compliance, misuse prevention, and long-term trust in AI-powered 
defense. 

J. Federated Learning and Privacy-Aware Deployment of LLMs 

As LLMs increasingly interact with sensitive user data—
particularly in mobile, edge, and distributed environments—ensuring 
privacy without compromising performance has become a top priority. 
Federated Learning (FL) offers a promising paradigm by enabling LLM 
training across decentralized devices without transferring raw data to 
centralized servers. This approach inherently aligns with data protection 
regulations like GDPR and CCPA, which emphasize data locality, 
minimization, and user consent [57]. 

Kairouz et al. [57] provided a foundational analysis of FL's 
scalability and security trade-offs in privacy-critical domains, while 
Bonawitz et al. [58] demonstrated its real-world implementation at 
scale within Google’s ecosystem. Their work on secure aggregation 
protocols—ensuring encrypted gradient updates across millions of 
devices—laid the groundwork for privacy-preserving AI in consumer-
facing applications. 

By integrating LLMs with FL infrastructure, security tools can now 
perform real-time anomaly detection, threat classification, and on-
device code analysis—without ever transmitting user data to the cloud. 
This architecture minimizes the risk of centralized data breaches and 
promotes compliance-by-design in regulated environments. Figure 3 
illustrates the architectural difference between centralized and federated 
LLM deployments, emphasizing how FL preserves data privacy by 
avoiding raw data transmission. 

 

 
Figure 3. Architectural comparison between centralized and federated LLM 

deployment. In centralized systems, user data is transmitted directly to a cloud-based 
LLM for processing—raising privacy, security, and compliance risks. In contrast, 
federated learning allows users to train models locally and share only encrypted 
model updates with a global server, preserving data locality and enabling privacy-
aware AI deployment. This distinction is crucial in regulated environments where 
sensitive user data cannot be exported or stored externally. 
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In practice, hybrid models are emerging that combine FL with on-
device fine-tuning, allowing devices to benefit from shared intelligence 
while customizing insights for local threats. For instance, mobile app 
security platforms using edge-deployed LLMs can detect suspicious 
behaviors based on local telemetry—without exposing private logs or 
PII to external servers. 

Complementary techniques such as differential privacy, 
homomorphic encryption, and secure multi-party computation further 
harden FL pipelines, defending against inference attacks and model 
inversion threats. These layered approaches ensure not only privacy and 
accountability, but also robustness against increasingly sophisticated 
adversaries. 

In the broader security landscape, federated learning represents a 
critical enabler—allowing defenders to leverage the full power of 
LLMs while navigating the legal, ethical, and technical constraints of 
real-world deployment. It is a cornerstone of trustworthy AI: balancing 
utility, compliance, and user-centric privacy in the face of rising cyber 
risks. 

K. Detection of Zero-Day Vulnerabilities 

Zero-day vulnerabilities—unidentified, unpatched flaws that can be 
exploited before developers are even aware of them—pose one of the 
most severe threats to digital infrastructure. Traditional detection 
systems, which rely heavily on known attack signatures, rule-based 
heuristics, or static analysis, are often blind to these emerging exploits. 
In contrast, Large Language Models (LLMs) have shown extraordinary 
potential in identifying such vulnerabilities through semantic code 
understanding, anomaly detection, and context-aware reasoning. 

In a benchmark study by Lisha et al. [59], a range of LLMs—
including GPT-based models and fine-tuned domain-specific 
variants—were tested across unstructured codebases for their ability to 
detect zero-day vulnerabilities. The results showed that LLMs trained 
on vulnerability-tagged corpora and contextual embeddings 
significantly outperformed conventional static analyzers, particularly in 
uncovering logic flaws, buffer overflows, and subtle control-flow 
vulnerabilities in novel software. 

More advanced detection systems now hybridize LLMs with 
symbolic execution engines and graph-based models to analyze control 
and data dependencies. These systems can not only flag potentially 
vulnerable code but also hypothesize how an exploit might propagate 
at runtime. This enables security teams to receive both alerts and 
plausible exploit paths, greatly enhancing triage speed and remediation 
accuracy. 

In real-world applications, these techniques are being embedded 
directly into CI/CD pipelines. For instance, GitHub’s code scanning 
tools and Google’s Play Protect are experimenting with LLM-powered 
models that detect anomalies even in compressed or obfuscated 
binaries. Beyond detection, these models are also applied in fuzzing—
automatically generating exploit-oriented test cases to expose 
weaknesses preemptively. Figure 4 summarizes the differences 
between traditional detection pipelines and LLM-based approaches, 
highlighting the enhanced capabilities introduced by LLMs. 

 

 

Figure 4. Comparison between traditional and LLM-enhanced zero-day 
vulnerability detection pipelines. Traditional approaches rely on static analyzers, 
rule-based heuristics, and known signatures, limiting their ability to detect unknown 

threats. In contrast, LLM-based systems leverage semantic code understanding, 
predictive modeling, and exploit path inference to detect vulnerabilities earlier and 
with greater accuracy. Key advantages include higher recall in unseen codebases, 
contextual awareness, and early-stage detection in CI/CD workflows. 

Ultimately, this capability reinforces the dual-use nature of LLMs: 
while defenders gain new tools for anticipating and neutralizing 
unknown threats, attackers could also fine-tune LLMs to identify and 
exploit zero-day opportunities faster than ever. The same deep semantic 
power that enables proactive security also raises the stakes—making 
zero-day detection a critical battleground in AI-driven cyber defense. 

L. LLMs in DevSecOps Automation 

As software delivery accelerates, security must evolve to match the 
speed of continuous integration and deployment. DevSecOps—the 
integration of security directly into DevOps workflows—demands 
automation, precision, and scale across the entire software development 
lifecycle. LLMs are increasingly being leveraged to meet this need, 
embedding intelligence into every stage of the pipeline. 

In modern DevSecOps environments, LLMs assist in: 

• Code scanning at every commit, flagging insecure patterns and 
suggesting remediations in real time. 

• Assessing containerized builds for compliance with internal and 
external security policies. 

• Analyzing dependency trees to identify vulnerable or outdated 
libraries before code reaches production. 

Prominent platforms have already begun integrating these 
capabilities. GitLab’s Auto DevSecOps system employs GPT-based 
models for dynamic scanning and compliance-as-code enforcement. 
Similarly, Microsoft’s Azure DevOps, in collaboration with OpenAI, 
leverages LLMs for predictive vulnerability scoring, contextual 
remediation advice, and automated security testing. 

These integrations shift security from a reactive checkpoint to a 
proactive, continuous layer—built directly into the tooling developers 
already use. This minimizes friction, shortens feedback loops, and 
enables security-by-default at scale. 

At the same time, this growing reliance on LLMs in DevSecOps 
pipelines highlights the broader theme of this paper: the dual-use nature 
of AI in security. The same models that harden pipelines could be 
exploited if misconfigured, biased, or insufficiently governed—making 
LLM observability, explainability, and governance as important as their 
functional accuracy. 

M. Ethics and Governance of Dual-Use LLMs 

As LLMs continue to scale in capability, their misuse potential 
grows in lockstep with their utility. This presents a classic dual-use 
dilemma: the same model that powers security auditing, malware 
detection, or automated code remediation can also be harnessed to 
generate polymorphic malware, optimize phishing campaigns, or 
obfuscate malicious logic. Such high-stakes symmetry demands 
governance frameworks as advanced and adaptable as the technologies 
they aim to regulate. 

Brundage et al. [61] have proposed concrete mechanisms to address 
these risks, including: 

• Structured red teaming to stress-test model behavior against 
adversarial use cases, 

• Staged release strategies to control the dissemination of high-risk 
capabilities, and 

• Model evaluation cards to document known limitations, safety 
constraints, and training data provenance. Similarly, the strategic 
integration of user-experience (UX) centric human-in-the-loop 
(HITL) systems, drawing from principles that enhance AI-assisted 
productivity and decision-making, provides a critical layer of 
oversight for managing the operational risks of dual-use LLMs [71]. 
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These ideas are now being codified in policy. The EU AI Act and 
the U.S. NIST AI Risk Management Framework both call for 
transparency in model development, auditability of training datasets, 
and clarity on downstream applications. These mandates aim to shift AI 
deployment from a reactive posture to one of accountability-by-design. 

Ethical AI research further emphasizes value alignment, especially 
in security-critical domains. Techniques like Reinforcement Learning 
with Human Feedback (RLHF) are being adapted not only to optimize 
helpfulness, but also to enforce social norms—teaching LLMs to: 

• Reject harmful or manipulative queries, 

• Disclose uncertainty in high-risk scenarios, and 

• Explain security decisions with interpretable confidence bounds. 

At the international level, coalitions such as the Global Partnership 
on AI (GPAI) and recent AI safety summits have introduced shared 
guardrails, including: 

• Pre-registration of frontier models, 

• Mandatory incident reporting, and 

• Centralized auditing repositories to detect and flag unsafe usage 
patterns. 

These governance efforts are not merely bureaucratic safeguards—
they are essential infrastructure for responsibly integrating LLMs into 
national security, digital forensics, and trust-sensitive ecosystems. 
Without them, the same tools designed to protect could be 
weaponized—turning shields into swords. Figure 5 illustrates the 
timeline of key governance milestones that have emerged between 2023 
and 2025, highlighting a growing global effort to institutionalize safety 
practices around powerful LLMs. 

 

 

Figure 5. Timeline of emerging governance frameworks for dual-use LLMs, 
spanning initiatives from 2023 to 2025. Key milestones include OpenAI’s structured 
red teaming practices, the public release of the NIST AI Risk Management 
Framework (RMF), transparency mandates in the EU AI Act, the GPAI global 
safety summit, and emerging standards for model pre-registration and incident 
reporting. Together, these efforts represent a global shift toward enforceable AI 
safety, accountability, and dual-use risk mitigation. 

N. Illustrative Examples of LLM Exploitation and Defense 

While the adoption of LLMs by defensive platforms is notable (as 
discussed in Section III.E), the theoretical risks of malicious LLM use 
are also beginning to manifest in observable incidents. Though 
comprehensive public data remains scarce due to the sensitive nature of 
such events, emerging reports and security analyses offer early 
glimpses into how LLMs are being weaponized and, in some instances, 
how novel defenses are responding [4] and [24]. For example, security 
analysts have reported increasingly sophisticated spear-phishing emails 
whose linguistic complexity and contextual relevance suggest LLM 
assistance, bypassing conventional filters [72]. Similarly, instances of 
novel malware variants exhibiting polymorphic behaviors potentially 
crafted or refined by generative models have been noted [73], posing 
new challenges for signature-based detection systems. These nascent 
examples underscore the practical urgency of the risks discussed and 

the need for continuous vigilance and innovation in defensive 
strategies. 

O. Securing Defensive LLM Systems 

As LLMs become integral components of cybersecurity 
infrastructure itself (e.g., in threat detection, code analysis, and incident 
response), their own security posture becomes paramount. Protecting 
these 'defender' LLMs from targeted attacks is crucial to maintain their 
efficacy and trustworthiness. Key considerations in safeguarding these 
sentinel AI systems include: 

Training Data Integrity and Poisoning Defense: Ensuring the 
provenance and integrity of data used to train and fine-tune security 
LLMs to prevent sophisticated poisoning attacks that could create blind 
spots or backdoors [74]. 

Model Evasion and Robustness: Continuously evaluating and 
hardening defensive LLMs against adversarial evasion techniques 
specifically designed to bypass AI-based detection [8] and [20]. 

Model Confidentiality and Integrity: Protecting the proprietary 
architecture and weights of security LLMs from extraction [8], and 
ensuring their operational integrity against unauthorized modifications. 

Secure Deployment and Monitoring: Implementing secure 
deployment practices for LLM-based security tools, including robust 
access controls, audit trails, and continuous monitoring for anomalous 
behavior or potential compromise of the AI system itself [75]. 

IV. FUTURE RESEARCH DIRECTIONS 

Building upon the insights and challenges identified in this survey, 
several critical avenues for future research emerge as essential for 
advancing the secure and beneficial use of LLMs in cybersecurity. 
Proactive investigation in these areas will be crucial for staying ahead 
of evolving threats and harnessing the full defensive potential of these 
technologies. Key areas warranting dedicated future research include: 

Developing Novel Robustness Techniques: Investigating new 
methods to enhance LLM resilience against sophisticated adversarial 
attacks, including adaptive defense mechanisms and lifelong learning 
systems that can evolve with threat landscapes [62]. 

Scalable and Verifiable Explainability: Creating XAI techniques 
for LLMs that are not only interpretable but also verifiable and scalable 
for complex cybersecurity decision-making processes, ensuring that 
security analysts can reliably understand and trust LLM outputs [52]-
[53]. 

Privacy-Preserving LLM Architectures for Security: 
Advancing research into novel federated learning configurations, 
homomorphic encryption applications for LLM inference, and 
differential privacy guarantees specifically tailored for cybersecurity 
data and use cases [57]. 

Proactive Governance and Ethical Frameworks: Exploring 
dynamic and anticipatory governance models that can adapt to the rapid 
evolution of LLM capabilities and their dual-use implications, 
including frameworks for continuous ethical impact assessments [9]-
[10], [29], [63], [72]-[77]. 

Cross-Lingual and Multi-Modal Threat Detection: Enhancing 
LLM capabilities to detect and analyze threats across diverse languages 
and data modalities (e.g., code, text, images, network traffic) [64] to 
address the global and multifaceted nature of cyberattacks. This 
includes leveraging GPU-accelerated feature extraction for real-time 
vision AI and LLM system efficiency [43]. 

Standardized Quantitative Benchmarking: Establishing more 
standardized, rigorous, and publicly accessible benchmarks for 
evaluating the performance, robustness, and fairness of LLMs in 
diverse cybersecurity tasks, to enable objective comparisons and guide 
adoption [53], [59]. This could also involve AI-powered systems for 
real-time anomaly detection and data refinement [66]. 
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Efficient and Scalable AI Processing: Investigating architectures 
for unsupervised, scalable clustering and pattern recognition, 
potentially leveraging GPU-acceleration, edge, and HPC architectures 
for challenging high-variability image data relevant to security 
analytics [43] ,[67].  

Finally, industry guidelines and frameworks such as the OWASP 
Top 10 for LLM Applications [68], the (ISC)² guidelines on AI and 
cybersecurity [69], and the SANS Institute’s white paper on AI-driven 
security practices [70] further emphasize the urgent need for robust 
security testing, continuous red-teaming, and practitioner upskilling to 
counter dual-use threats posed by LLMs. 

V. CONCLUSION 

Large Language Models (LLMs) are reshaping the cybersecurity 
landscape—not only by introducing new capabilities for automation, 
detection, and threat response, but also by amplifying risks through 
misuse, misalignment, or lack of oversight. As demonstrated across this 
paper, the same generative power that enables secure code generation, 
anomaly detection, and zero-day vulnerability identification can also be 
weaponized to automate malware creation, launch sophisticated 
phishing campaigns, or bypass traditional defenses. 

This dual-use dynamic—the central double-edged sword of 
LLMs—demands a strategic response that balances innovation with 
accountability. Defensive use cases such as federated learning, 
DevSecOps integration, and explainable AI show immense promise, 
but only when deployed under robust governance structures, ethical 
auditability, and transparent development practices. 

To effectively translate these collaborative imperatives into 
concrete actions, tailored recommendations for specific stakeholders 
are essential: 

For Policymakers and Regulators: Focus should be on 
establishing agile and globally harmonized regulatory frameworks that 
encourage responsible AI innovation while mandating baseline 
security, transparency, and accountability standards for high-risk LLM 
applications in cybersecurity. This includes fostering public-private 
partnerships to share threat intelligence and best practices. 

For Security Organizations and Practitioners (CISOs, SecOps 
teams): Prioritize the development of comprehensive strategies for 
integrating LLMs into security workflows, including rigorous testing 
and validation of AI tools, continuous red-teaming exercises against AI-
augmented threats, and upskilling security professionals to effectively 
leverage and manage these technologies. 

For LLM Developers and AI Researchers: Emphasize security-
by-design principles throughout the LLM lifecycle, from data curation 
and model training to deployment and monitoring. Invest in research on 
inherently safer LLM architectures, bias detection and mitigation 
techniques specific to security contexts, and robust mechanisms for 
content authenticity and provenance to counter AI-generated 
disinformation and malware. 

Ultimately, securing the future of LLMs is not just a technical 
challenge—it is a societal imperative. Only by embracing both sides of 
this double-edged sword can we harness the full potential of LLMs to 
defend the digital frontier while minimizing their risk as instruments of 
exploitation. 
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