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Abstract— Large Language Models (LLMs) and generative Al
(GenAl) systems, such as ChatGPT, Claude, Gemini, LLaMA,
Copilot, Stable Diffusion by OpenAl, Anthropic, Google, Meta,
Microsoft, Stability Al, respectively, are revolutionizing
cybersecurity, enabling both automated defense and sophisticated
attacks. These technologies power real-time threat detection, phishing
defense, secure code generation, and vulnerability exploitation at
unprecedented scales. LLM-generated malware alone is projected to
account for 50% of detected threats in 2025, up from just 2% in 2021,
emphasizing the need for next-generation security frameworks.

This paper presents a comprehensive survey of the beneficial and
malicious applications of LLMs in cybersecurity, including zero-day
detection, DevSecOps, federated learning, synthetic content analysis,
and explainable AI (XAI). Drawing on a review of over 70 academic
papers, industry reports, and technical documents, this work
synthesizes insights from real-world case studies across platforms like
Google Play Protect, Microsoft Defender, Amazon Web Services
(AWS), Apple’s App Store, OpenAl Plugin Stores, Hugging Face
Spaces, and GitHub, alongside emerging initiatives like the SAFE
Framework and Al-driven anomaly detection.

We conclude with practical recommendations for responsible and
transparent LLM deployment, including model watermarking,
adversarial defense, and cross-industry collaboration—setting a new
benchmark for rigorous, holistic cybersecurity research at the
intersection of Al and threat defense—and offering a roadmap for
secure, scalable LLM systems that serves as a critical reference for
researchers, engineers, and security leaders navigating the complex
challenges of Al-driven cybersecurity.
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I. INTRODUCTION

The rapid evolution of artificial intelligence has placed Large
Language Models (LLMs) and generative Al at the forefront of
software innovation and cybersecurity transformation. Originally
developed to enhance natural language understanding, LLMs such as
GPT-4, PaLM, and Gemini are now widely adopted across industries to
automate code generation, accelerate development workflows, and
enable intelligent decision-making [1]-[3]. However, this widespread
adoption has created a double-edged sword: LLMs empower
defenders—especially platform administrators like Google Play, Apple
App Store, and other enterprise app platforms—to perform static code
scanning, automate threat detection, and improve code quality in real
time. Yet simultaneously, those same models are exploited by attackers
to generate malware, obfuscate code, and discover vulnerabilities at
scale. This duality introduces complex security and governance
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challenges, underscoring the urgent need for systematic analysis,
responsible deployment, and robust defensive frameworks [4].

This paper presents a comprehensive survey of both the risks and
opportunities associated with LLMs in cybersecurity. We explore their
dual-use nature, recent industry and academic advances, and how both
defenders and adversaries leverage these models for tasks such as code
generation, malware design, zero-day detection, and DevSecOps,
supported by architectural comparisons, benchmark studies, and cross-
industry case examples. To guide the reader, the paper is structured as
follows: Section II lays the foundational background by reviewing
existing literature on the evolution, capabilities, and early governance
efforts concerning LLMs. Section III provides an in-depth analysis of
LLM applicability in security, detailing their dual-use potential,
specific threat vectors like Al-generated malware, the role of
explainability, and emerging defensive strategies. Building upon this
analysis, Section IV outlines key directions for future research essential
for advancing the secure use of LLMs. The paper concludes in Section
V, which summarizes the findings and proposes a governance roadmap
rooted in explainability, privacy-by-design, federated learning, and
compliance. By aligning defensive innovation with emerging safety
standards, this paper contributes a timely framework for navigating the
rising complexity of LLM-powered cybersecurity ecosystems.

II. BACKGROUND AND LITERATURE REVIEW

A. Evolution and Capabilities of LLMs

Large Language Models (LLMs) have evolved rapidly from their
initial applications in natural language translation and generation to
highly capable systems supporting complex software engineering tasks.
Models such as GPT-4 and PaLM now perform code generation,
refactoring, debugging, and even formal verification with increasing
accuracy and fluency [1], [5]. These advancements are enabled by
scaling transformer architectures and training on diverse programming
and natural language corpora. Recent research from OpenAl and
Google demonstrates how LLMs can integrate into full development
pipelines, assisting with test case creation, API documentation, and
dynamic bug resolution [6]-[8].

B. Security Risks and Early Governance Efforts

The dual-use nature of LLMs has raised significant security
concerns. On one hand, they can support code auditing and threat
detection; on the other, they can generate obfuscated or insecure code,
or be weaponized for malicious purposes. Prior work has emphasized
the need for proactive safeguards, such as Brundage et al.'s
recommendations on structured red teaming and audit trails, and the
European Union’s Artificial Intelligence Act, which mandates risk
assessments and transparency reports for high-impact models [9], [10].
These frameworks aim to mitigate misuse while supporting responsible
innovation.

C. Ethics and Governance of Dual-Use LLMs

Integrating LLMs into CI/CD pipelines automates crucial security
tasks such as code review, threat detection, and compliance



enforcement. GitLab and Azure DevOps showcase how GPT based
tools can enable real-time security hardening and policy enforcement
[11],[12].

While the EU Al Act and the US NIST AI RMF represent
significant strides, the global governance landscape for LLMs in
cybersecurity remains dynamic, with other major technological regions
developing their own distinct approaches. For instance, countries in
Asia, such as China, Japan, South Korea, and Singapore, are actively
formulating Al regulations and ethical guidelines that reflect their
unique priorities. Understanding these varied international perspectives
and fostering dialogue towards greater regulatory interoperability will
be crucial for addressing the borderless nature of cyber threats and
ensuring a globally coordinated response to the risks posed by dual-use
AT [9]-[12].

D. LLMs in DevSecOps Automation

Empirical studies of GitHub Copilot and Microsoft Security
Copilot illustrate how Al augmented developers are more efficient in
detecting and resolving security flaws. These tools not only enhance
productivity but also reduce the probability of vulnerabilities slipping
into production code [13], [14].

E. Human-AI Collaboration for Secure Development

An important facet of human-Al collaboration in secure
development involves leveraging Al models to augment human
capabilities in threat detection. For instance, LLMs like VulBERTa are
being fine-tuned to identify zero day vulnerabilities through pattern
recognition in source code. These models outperform traditional static
analyzers, significantly improving detection timelines and precision in
identifying new attack vectors [15].

F. Privacy-Aware Deployment of LLMs via Federated Learning

Privacy preserving LLM deployment strategies are increasingly
relevant. Federated learning allows training across distributed devices
without centralizing data, aligning with laws like GDPR. Kairouz et al.
and Bonawitz et al. have demonstrated that these frameworks preserve
privacy while maintaining model utility [16], [17].

G. Explainability and Trust in AI Driven Defense

The adoption of LLMs in automated security systems demands
transparency. Explainable Al (XAI) methods like SHAP and LIME
have been customized to make LLM based vulnerability classifications
interpretable. These models help developers and analysts understand
the rationale behind predictions, supporting auditability and compliance
[18], [19].

H. Adversarial Attacks and Model Vulnerabilities

The integration of LLMs into security critical domains has exposed
them to sophisticated adversarial attacks. Carlini et al. highlighted how
training data could be extracted from LLMs, undermining
confidentiality [8]. Wallace et al. demonstrated that prompt injection
and adversarial fine tuning can manipulate LLM outputs, evading
content filters. Recent work by Jia et al. organized a global competition
revealing how LLMs can be tricked into generating offensive content
and misinformation, emphasizing the need for rigorous adversarial
testing frameworks [20].

III. ANALYSIS OF LLM APPLICABILITY IN SECURITY

As LLMs become deeply embedded in software development and
cybersecurity pipelines, their dual-use potential has triggered increasing
scrutiny. A growing body of research has documented how these
models can unintentionally or deliberately produce insecure code,
including cryptographic flaws, SQL injection vectors, and XSS
vulnerabilities [21]-[23]. More alarmingly, the accessibility of LLMs
has democratized the creation of deceptive content—enabling non-
experts and malicious actors alike to generate phishing apps,

polymorphic malware, and social engineering scripts at scale [24]-[26].
These developments reflect not isolated failures but systemic risks
introduced by generative models when deployed without sufficient
constraints. This section analyzes such risks through three lenses: (1)
the emerging threat landscape shaped by misuse and amateur error, (2)
industry-led defense strategies to mitigate LLM-enabled attacks, and
(3) the broader governance and technical challenges that complicate
safe deployment.

A. Amateur Developers and Security Risks

While LLMs empower rapid software creation, they have also
unintentionally enabled a wave of insecure development by amateur
coders. These models lower technical barriers to entry, allowing
individuals with minimal security training to generate functional code
quickly. However, this ease often comes at the cost of safety. Studies
have shown that inexperienced developers frequently incorporate
LLM-generated snippets directly into applications without validating
correctness, context, or security implications [27], [28]. As a result,
common vulnerabilities such as improper authentication, insecure API
usage, and unsafe cryptographic practices proliferate in production
software.

This trend is particularly concerning in open-source and mobile app
ecosystems, where low-friction publication processes allow insecure
code to reach wide audiences. Unlike deliberate attacks, these security
flaws emerge from structural gaps—Ilack of tooling, review, and
awareness—highlighting the need for LLM-integrated guardrails that
can proactively flag unsafe patterns for novice users. While amateur
misuse stems from lack of expertise, the deliberate exploitation of
LLMs by adversaries reveals a more calculated—and scalable—
weaponization of generative Al

B. Malicious Actors Leveraging LLMs

In contrast to accidental misuse by amateurs, malicious actors are
leveraging LLMs as force multipliers for intentional cyberattacks.
These adversaries use generative models to automate large-scale
creation of malware, phishing payloads, ransomware variants, and code
obfuscation strategies. Unlike conventional malware authors who
required domain expertise, attackers can now prompt LLMs to output
malicious scripts with minimal effort—dramatically accelerating
development cycles.

Industry reports indicate a sharp escalation in LLM-facilitated
threat activity, with LLM-generated or assisted malware constituting a
significant share of all new threats in 2025 [29]-[31]. Attackers further
exploit LLMs to bypass static filters by generating code that mutates
slightly on each iteration—evading signature-based detection systems.
This reflects a paradigm shift in threat scalability: what was once
human-limited is now Al-augmented, enabling adversaries to operate at
industrial scale.

C. Statistical Overview of LLM Related Malware

The proliferation of LLM technologies has corresponded with a
measurable increase in their exploitation by malicious actors. Recent
cybersecurity reports reveal a sharp upward trend in malware generated
or assisted by LLMs, raising concerns about automated threat scaling
and democratized access to advanced attack tools. Table 1 presents a
year-over-year breakdown of total malware cases and the proportion
attributed to LLM-generated threats between 2021 and 2025 [32].

Table 1: Growth of LLM-Generated Malware (2021-2025)

2021 833 2 1.666
2022 104.5 5 523
2023 150.0 15 22.5
2024 1843 30 55.29
2025 2212 50 110.6



To quantify the accelerating impact of LLMs on the threat
landscape, we analyzed data from Cybersecurity Ventures covering
malware trends from 2021 to 2025. As shown in Figure 1, total
malware cases have steadily increased over this period. More notably,
the share of malware attributed to LLMs has surged—from just 2% in
2021 to a projected 50% in 2025. This trend highlights a fundamental
shift: LLMs are no longer fringe tools for experimentation, but are now
actively shaping the scale, speed, and sophistication of cyber threats.
The sharp growth curve underscores the need for proactive defense
mechanisms that account for Al-assisted attack vectors and evolving
adversarial capabilities.

250M Estimated Annual Malware Detections with LLM Contribution (2021-2025)
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Figure 1 Estimated annual global malware detections with LLM-assisted
contribution (2021-2025). Stacked bars show total malware cases, with the red
portion repr ing LLM- d threats. The black line highlights the rapid
growth of Al-driven malware, rising from 2% to 50% of all detections over the five-
year period.

D. Defensive Utilization of LLMs in Mobile App Security

In response to rising Al-powered threats, mobile platform providers
are embedding LLMs directly into their security workflows. One of the
most effective use cases is automated code review—where LLMs
augment traditional static analyzers by identifying logic flaws, unusual
API usage, or obfuscated payloads that escape signature-based
detection.

Google’s Gemini, for instance, plays a pivotal role in powering Play
Protect, which scans millions of Android applications daily for
malware, policy violations, and suspicious behaviors. By using LLMs,
Play Protect has reduced both false positives and time-to-detection,
allowing for proactive app ecosystem defense at unprecedented scale
[331-[36].

These use cases demonstrate how LLMs can shift mobile app
security from reactive filtering to intelligent pre-deployment screening,
flagging issues before users ever download an app. However, as
defensive applications of LLMs grow more powerful, they also inherit
risks such as overfitting, bias, or exploitability—making explainability
and continuous retraining essential.

E. Industry Case Studies: Leveraging LLMs for Cyber Defense

As threats fueled by LLMs escalate, leading technology companies
are responding by deploying their own LLM-powered tools to reinforce
digital defenses. These platforms integrate LLMs into core security
operations such as code review, static analysis, compliance auditing,
and threat intelligence. Each organization tailors its LLM deployment
strategy to align with its security priorities, infrastructure, and
customer-facing services [36]-[40]. Table 2 summarizes several of
these leading companies and their applications of LLM technology for
cyber defense.

These LLM-powered systems represent a shift from reactive to
proactive security postures. For instance, Google's Gemini underpins
Play Protect’s live threat detection engine, capable of analyzing
millions of apps for suspicious behavior in real time. Microsoft's

Security Copilot assists developers and analysts by flagging unsafe
code patterns and generating remediation steps. Amazon’s
CodeWhisperer is deeply embedded in IDEs, helping developers
identify insecure code at the moment of creation.

By embedding LLMs into their security stacks, these organizations
are not only protecting their own platforms but also setting new industry
standards for Al-augmented cybersecurity. However, the same
capabilities—if left unchecked or open-sourced without safeguards—
can empower adversaries, reinforcing the paper’s core thesis: LLMs are
a powerful but inherently dual-use technology.

Table 2: Leading Companies Leveraging LLMs For Security

Company LLM Technology Application

Google Gemini Malware Detection, Static Analysis
GPT-4 Security Copilot, Code Review
Amazon CodeWhisperer Vulnerability Detection
Watsonx Compliance & Risk Management
AIP Threat Hunting & Behavioral Analysis

F. Bias and Fairness Issues in LLM-Based Security Systems

While LLMs offer powerful advantages in automating security
analysis, they also introduce systemic risks related to bias and fairness.
These models are trained on massive datasets that often reflect
historical imbalances, implicit stereotypes, or geographic skew—issues
that can propagate into downstream security decisions. In high-stakes
environments such as app store moderation, code review, or
vulnerability triage, biased outputs can result in misclassifications,
disproportionately affecting certain developer communities or
categories of software [41], [42].

For example, security LLMs trained primarily on English-language
or Western-centric data may struggle to accurately interpret or evaluate
apps developed in other locales, leading to higher false positive rates.
Similarly, bias in labeling training data (e.g., which code patterns were
marked as malicious or benign) can skew the model’s risk assessments,
potentially flagging harmless applications as threats or overlooking real
vulnerabilities in less represented codebases.

These challenges illustrate yet another edge of the sword: even
defensive LLM systems can inadvertently create harm if deployed
without fairness audits, dataset transparency, and debiasing techniques.
As LLMs continue to be integrated into security workflows, algorithmic
accountability must become a core design principle, not an afterthought.

G. Scalability Concerns in LLM-Based Security Systems

As LLMs are increasingly integrated into security pipelines, scaling
these models to handle production-level traffic—especially in global
platforms like app stores or CI/CD environments—presents major
technical and operational challenges. Unlike isolated developer tools or
research prototypes, real-world deployment demands low-latency
inference, cost-effective infrastructure, and high throughput across
diverse languages and architectures [43].

For example, scanning millions of apps in Google Play or Apple’s
App Store for policy violations, malware, or misconfigurations using
LLM:s requires robust resource allocation strategies, distributed model
serving, and dynamic workload balancing. The complexity compounds
further when real-time threat detection is needed—where every
inference must complete within milliseconds, and models must be
resilient to edge cases and adversarial inputs.

Additionally, maintaining consistent LLM behavior across regions
with different regulations (e.g., GDPR in the EU, CCPA in California)
adds operational overhead. Model fine-tuning or rule enforcement may
need to be localized, increasing the burden of deployment and
monitoring.



This raises a critical tension: LLMs are powerful, but not trivially
scalable. Their integration into global security infrastructures must be
carefully engineered to avoid performance bottlenecks, regional
inconsistencies, and unexpected failure modes—especially as
adversaries attempt to exploit system blind spots.

H. Regulatory Compliance and Privacy Constraints

The deployment of LLMs in security workflows introduces
complex compliance challenges, particularly under data protection
frameworks such as the General Data Protection Regulation (GDPR)
and the California Consumer Privacy Act (CCPA) [44], [45]. These
regulations impose strict requirements around data minimization, user
consent, data residency, and the right to explanation—all of which
impact how LLMs can be trained, fine-tuned, and applied to sensitive
user content.

For example, static code scans or behavioral analysis performed by
LLMs may inadvertently process personally identifiable information
(PII) or usage metadata, triggering legal obligations. Federated learning
and on-device inference offer promising paths forward, but adopting
privacy-preserving techniques at scale remains technically demanding
and legally ambiguous.

Moreover, transparency requirements—such as explaining how a
model reached a decision or why a threat was flagged—can be difficult
to fulfill given the black-box nature of many large transformer models.
Without rigorous documentation, organizations risk regulatory
noncompliance, reputational harm, or unintended discriminatory
outcomes.

To truly harness LLMs for security in regulated environments,
defenders must embed privacy-by-design principles into every stage of
model development and deployment, while simultaneously investing in
robust auditability and consent-driven architectures.

1. Explainability and Trust in AI-Driven Defense

As LLMs take on increasingly autonomous roles in cybersecurity—
classifying vulnerabilities, triaging threats, or flagging anomalies—the
need for explainable artificial intelligence (XAI) has become
paramount. Without transparency into how these decisions are made,
stakeholders may lose confidence in Al-driven defense systems,
especially when they impact compliance, reputation, or user rights.

To bridge this gap, researchers have adapted traditional XAI
techniques such as SHAP and LIME to LLMs, enabling visibility into
influential tokens, attention patterns, and decision pathways [52]. These
interpretations not only enhance trust but also help security analysts
validate model behavior, identify edge-case failures, and fine-tune
thresholds for deployment. The major categories of explainability tools
and their use cases in security pipelines are summarized in Figure 2.
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Figure 2. Categorization of explainability tools used in LLM-driven
cybersecurity systems. Each pair highlights a class of explainability objective—
ranging from model-level interpretation to governance—and maps it to real-world
tools such as SHAP, CySecBench, and Al model cards. These tools support
transparency, auditability, and trust across the security pipeline, helping address
risks introduced by the opaque nature of large language models.

Recent work has also led to the creation of domain-specific
benchmarks for evaluating explainability in security contexts. One such

effort, CySecBench by Mishra et al. [53], provides over 12,000
cybersecurity-focused prompts categorized by attack type, used to test
how well LLMs maintain interpretability under adversarial pressure.
Through prompt obfuscation and targeted jailbreaking scenarios, the
benchmark has revealed varying degrees of robustness and
transparency among leading models like ChatGPT, Gemini, and
Claude—underscoring the urgent need for explainability tools tailored
to high-risk applications.

In educational and industrial settings, tools like CyberMentor [54]
demonstrate how explainable Al can support cybersecurity training by
offering personalized, interpretable feedback. By leveraging Retrieval-
Augmented Generation (RAG) and agentic workflows, these systems
teach not just what the threat is—but why it matters and how it works.

More broadly, the dual-use nature of LLMs has prompted calls for
ethical auditing frameworks where explainability becomes a central
pillar of security governance. Strategies such as the Cyber Kill Chain
(CKC) and Al model cards are being used to document vulnerabilities,
decision logic, and misuse potential in a structured, auditable format.
As emphasized by Barrett et al. [S5] and Gupta et al. [56], explainability
is not merely a UX feature—it’s essential infrastructure for regulatory
compliance, misuse prevention, and long-term trust in Al-powered
defense.

J. Federated Learning and Privacy-Aware Deployment of LLMs

As LLMs increasingly interact with sensitive user data—
particularly in mobile, edge, and distributed environments—ensuring
privacy without compromising performance has become a top priority.
Federated Learning (FL) offers a promising paradigm by enabling LLM
training across decentralized devices without transferring raw data to
centralized servers. This approach inherently aligns with data protection
regulations like GDPR and CCPA, which emphasize data locality,
minimization, and user consent [57].

Kairouz et al. [57] provided a foundational analysis of FL's
scalability and security trade-offs in privacy-critical domains, while
Bonawitz et al. [58] demonstrated its real-world implementation at
scale within Google’s ecosystem. Their work on secure aggregation
protocols—ensuring encrypted gradient updates across millions of
devices—Ilaid the groundwork for privacy-preserving Al in consumer-
facing applications.

By integrating LLMs with FL infrastructure, security tools can now
perform real-time anomaly detection, threat classification, and on-
device code analysis—without ever transmitting user data to the cloud.
This architecture minimizes the risk of centralized data breaches and
promotes compliance-by-design in regulated environments. Figure 3
illustrates the architectural difference between centralized and federated
LLM deployments, emphasizing how FL preserves data privacy by
avoiding raw data transmission.
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Figure 3. Architectural comparison between centralized and federated LLM
deployment. In centralized systems, user data is transmitted directly to a cloud-based
LLM for processing—raising privacy, security, and compliance risks. In contrast,
federated learning allows users to train models locally and share only encrypted
model updates with a global server, preserving data locality and enabling privacy-
aware Al deployment. This distinction is crucial in regulated environments where
sensitive user data cannot be exported or stored externally.




In practice, hybrid models are emerging that combine FL with on-
device fine-tuning, allowing devices to benefit from shared intelligence
while customizing insights for local threats. For instance, mobile app
security platforms using edge-deployed LLMs can detect suspicious
behaviors based on local telemetry—without exposing private logs or
PII to external servers.

Complementary techniques such as differential privacy,
homomorphic encryption, and secure multi-party computation further
harden FL pipelines, defending against inference attacks and model
inversion threats. These layered approaches ensure not only privacy and
accountability, but also robustness against increasingly sophisticated
adversaries.

In the broader security landscape, federated learning represents a
critical enabler—allowing defenders to leverage the full power of
LLMs while navigating the legal, ethical, and technical constraints of
real-world deployment. It is a cornerstone of trustworthy Al: balancing
utility, compliance, and user-centric privacy in the face of rising cyber
risks.

K. Detection of Zero-Day Vulnerabilities

Zero-day vulnerabilities—unidentified, unpatched flaws that can be
exploited before developers are even aware of them—pose one of the
most severe threats to digital infrastructure. Traditional detection
systems, which rely heavily on known attack signatures, rule-based
heuristics, or static analysis, are often blind to these emerging exploits.
In contrast, Large Language Models (LLMs) have shown extraordinary
potential in identifying such vulnerabilities through semantic code
understanding, anomaly detection, and context-aware reasoning.

In a benchmark study by Lisha et al. [59], a range of LLMs—
including GPT-based models and fine-tuned domain-specific
variants—were tested across unstructured codebases for their ability to
detect zero-day vulnerabilities. The results showed that LLMs trained
on vulnerability-tagged corpora and contextual embeddings
significantly outperformed conventional static analyzers, particularly in
uncovering logic flaws, buffer overflows, and subtle control-flow
vulnerabilities in novel software.

More advanced detection systems now hybridize LLMs with
symbolic execution engines and graph-based models to analyze control
and data dependencies. These systems can not only flag potentially
vulnerable code but also hypothesize how an exploit might propagate
at runtime. This enables security teams to receive both alerts and
plausible exploit paths, greatly enhancing triage speed and remediation
accuracy.

In real-world applications, these techniques are being embedded
directly into CI/CD pipelines. For instance, GitHub’s code scanning
tools and Google’s Play Protect are experimenting with LLM-powered
models that detect anomalies even in compressed or obfuscated
binaries. Beyond detection, these models are also applied in fuzzing—
automatically generating exploit-oriented test cases to expose
weaknesses preemptively. Figure 4 summarizes the differences
between traditional detection pipelines and LLM-based approaches,
highlighting the enhanced capabilities introduced by LLMs.
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Figure 4. Comparison between traditional and LLM-enhanced zero-day
vulnerability detection pipelines. Traditional approaches rely on static analyzers,
rule-based heuristics, and known signatures, limiting their ability to detect unknown

threats. In contrast, LLM-based systems leverage semantic code understanding,
predictive modeling, and exploit path inference to detect vulnerabilities earlier and
with greater accuracy. Key advantages include higher recall in unseen codebases,
contextual awareness, and early-stage detection in CI/CD workflows.

Ultimately, this capability reinforces the dual-use nature of LLMs:
while defenders gain new tools for anticipating and neutralizing
unknown threats, attackers could also fine-tune LLMs to identify and
exploit zero-day opportunities faster than ever. The same deep semantic
power that enables proactive security also raises the stakes—making
zero-day detection a critical battleground in Al-driven cyber defense.

L. LLMs in DevSecOps Automation

As software delivery accelerates, security must evolve to match the
speed of continuous integration and deployment. DevSecOps—the
integration of security directly into DevOps workflows—demands
automation, precision, and scale across the entire software development
lifecycle. LLMs are increasingly being leveraged to meet this need,
embedding intelligence into every stage of the pipeline.

In modern DevSecOps environments, LLMs assist in:

e Code scanning at every commit, flagging insecure patterns and
suggesting remediations in real time.

e Assessing containerized builds for compliance with internal and
external security policies.

e Analyzing dependency trees to identify vulnerable or outdated
libraries before code reaches production.

Prominent platforms have already begun integrating these
capabilities. GitLab’s Auto DevSecOps system employs GPT-based
models for dynamic scanning and compliance-as-code enforcement.
Similarly, Microsoft’s Azure DevOps, in collaboration with OpenAl,
leverages LLMs for predictive vulnerability scoring, contextual
remediation advice, and automated security testing.

These integrations shift security from a reactive checkpoint to a
proactive, continuous layer—built directly into the tooling developers
already use. This minimizes friction, shortens feedback loops, and
enables security-by-default at scale.

At the same time, this growing reliance on LLMs in DevSecOps
pipelines highlights the broader theme of this paper: the dual-use nature
of Al in security. The same models that harden pipelines could be
exploited if misconfigured, biased, or insufficiently governed—making
LLM observability, explainability, and governance as important as their
functional accuracy.

M. Ethics and Governance of Dual-Use LLMs

As LLMs continue to scale in capability, their misuse potential
grows in lockstep with their utility. This presents a classic dual-use
dilemma: the same model that powers security auditing, malware
detection, or automated code remediation can also be harnessed to
generate polymorphic malware, optimize phishing campaigns, or
obfuscate malicious logic. Such high-stakes symmetry demands
governance frameworks as advanced and adaptable as the technologies
they aim to regulate.

Brundage et al. [61] have proposed concrete mechanisms to address
these risks, including:

e Structured red teaming to stress-test model behavior against
adversarial use cases,

o Staged release strategies to control the dissemination of high-risk
capabilities, and

e Model evaluation cards to document known limitations, safety
constraints, and training data provenance. Similarly, the strategic
integration of user-experience (UX) centric human-in-the-loop
(HITL) systems, drawing from principles that enhance Al-assisted
productivity and decision-making, provides a critical layer of
oversight for managing the operational risks of dual-use LLMs [71].



These ideas are now being codified in policy. The EU AI Act and
the U.S. NIST AI Risk Management Framework both call for
transparency in model development, auditability of training datasets,
and clarity on downstream applications. These mandates aim to shift Al
deployment from a reactive posture to one of accountability-by-design.

Ethical Al research further emphasizes value alignment, especially
in security-critical domains. Techniques like Reinforcement Learning
with Human Feedback (RLHF) are being adapted not only to optimize
helpfulness, but also to enforce social norms—teaching LLMs to:

o Reject harmful or manipulative queries,
o Disclose uncertainty in high-risk scenarios, and
e Explain security decisions with interpretable confidence bounds.

At the international level, coalitions such as the Global Partnership
on Al (GPAI) and recent Al safety summits have introduced shared
guardrails, including:

e Pre-registration of frontier models,
e Mandatory incident reporting, and

e Centralized auditing repositories to detect and flag unsafe usage
patterns.

These governance efforts are not merely bureaucratic safeguards—
they are essential infrastructure for responsibly integrating LLMs into
national security, digital forensics, and trust-sensitive ecosystems.
Without them, the same tools designed to protect could be
weaponized—turning shields into swords. Figure 5 illustrates the
timeline of key governance milestones that have emerged between 2023
and 2025, highlighting a growing global effort to institutionalize safety
practices around powerful LLMs.
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Figure 5. Timeline of emerging governance frameworks for dual-use LLMs,
spanning initiatives from 2023 to 2025. Key milestones include OpenAI’s structured
red teaming practices, the public release of the NIST Al Risk Management
Framework (RMF), transparency mandates in the EU Al Act, the GPAI global
safety summit, and emerging standards for model pre-registration and incident
reporting. Together, these efforts represent a global shift toward enforceable Al
safety, accountability, and dual-use risk mitigation.

N. Illustrative Examples of LLM Exploitation and Defense

While the adoption of LLMs by defensive platforms is notable (as
discussed in Section IIL.E), the theoretical risks of malicious LLM use
are also beginning to manifest in observable incidents. Though
comprehensive public data remains scarce due to the sensitive nature of
such events, emerging reports and security analyses offer early
glimpses into how LLMs are being weaponized and, in some instances,
how novel defenses are responding [4] and [24]. For example, security
analysts have reported increasingly sophisticated spear-phishing emails
whose linguistic complexity and contextual relevance suggest LLM
assistance, bypassing conventional filters [72]. Similarly, instances of
novel malware variants exhibiting polymorphic behaviors potentially
crafted or refined by generative models have been noted [73], posing
new challenges for signature-based detection systems. These nascent
examples underscore the practical urgency of the risks discussed and

the need for continuous vigilance and innovation in defensive
strategies.

O. Securing Defensive LLM Systems

As LLMs become integral components of cybersecurity
infrastructure itself (e.g., in threat detection, code analysis, and incident
response), their own security posture becomes paramount. Protecting
these 'defender' LLMs from targeted attacks is crucial to maintain their
efficacy and trustworthiness. Key considerations in safeguarding these
sentinel Al systems include:

Training Data Integrity and Poisoning Defense: Ensuring the
provenance and integrity of data used to train and fine-tune security
LLMs to prevent sophisticated poisoning attacks that could create blind
spots or backdoors [74].

Model Evasion and Robustness: Continuously evaluating and
hardening defensive LLMs against adversarial evasion techniques
specifically designed to bypass Al-based detection [8] and [20].

Model Confidentiality and Integrity: Protecting the proprietary
architecture and weights of security LLMs from extraction [8], and
ensuring their operational integrity against unauthorized modifications.

Secure Deployment and Monitoring: Implementing secure
deployment practices for LLM-based security tools, including robust
access controls, audit trails, and continuous monitoring for anomalous
behavior or potential compromise of the Al system itself [75].

IV. FUTURE RESEARCH DIRECTIONS

Building upon the insights and challenges identified in this survey,
several critical avenues for future research emerge as essential for
advancing the secure and beneficial use of LLMs in cybersecurity.
Proactive investigation in these areas will be crucial for staying ahead
of evolving threats and harnessing the full defensive potential of these
technologies. Key areas warranting dedicated future research include:

Developing Novel Robustness Techniques: Investigating new
methods to enhance LLM resilience against sophisticated adversarial
attacks, including adaptive defense mechanisms and lifelong learning
systems that can evolve with threat landscapes [62].

Scalable and Verifiable Explainability: Creating XAl techniques
for LLMs that are not only interpretable but also verifiable and scalable
for complex cybersecurity decision-making processes, ensuring that
security analysts can reliably understand and trust LLM outputs [52]-
[53].

Privacy-Preserving LLM Architectures for Security:
Advancing research into novel federated learning configurations,
homomorphic encryption applications for LLM inference, and
differential privacy guarantees specifically tailored for cybersecurity
data and use cases [57].

Proactive Governance and Ethical Frameworks: Exploring
dynamic and anticipatory governance models that can adapt to the rapid
evolution of LLM capabilities and their dual-use implications,
including frameworks for continuous ethical impact assessments [9]-
[10], [29], [63], [72]-[77].

Cross-Lingual and Multi-Modal Threat Detection: Enhancing
LLM capabilities to detect and analyze threats across diverse languages
and data modalities (e.g., code, text, images, network traffic) [64] to
address the global and multifaceted nature of cyberattacks. This
includes leveraging GPU-accelerated feature extraction for real-time
vision Al and LLM system efficiency [43].

Standardized Quantitative Benchmarking: Establishing more
standardized, rigorous, and publicly accessible benchmarks for
evaluating the performance, robustness, and fairness of LLMs in
diverse cybersecurity tasks, to enable objective comparisons and guide
adoption [53], [59]. This could also involve Al-powered systems for
real-time anomaly detection and data refinement [66].



Efficient and Scalable AI Processing: Investigating architectures
for unsupervised, scalable clustering and pattern recognition,
potentially leveraging GPU-acceleration, edge, and HPC architectures
for challenging high-variability image data relevant to security
analytics [43],[67].

Finally, industry guidelines and frameworks such as the OWASP
Top 10 for LLM Applications [68], the (ISC)* guidelines on Al and
cybersecurity [69], and the SANS Institute’s white paper on Al-driven
security practices [70] further emphasize the urgent need for robust
security testing, continuous red-teaming, and practitioner upskilling to
counter dual-use threats posed by LLMs.

V. CONCLUSION

Large Language Models (LLMs) are reshaping the cybersecurity
landscape—not only by introducing new capabilities for automation,
detection, and threat response, but also by amplifying risks through
misuse, misalignment, or lack of oversight. As demonstrated across this
paper, the same generative power that enables secure code generation,
anomaly detection, and zero-day vulnerability identification can also be
weaponized to automate malware creation, launch sophisticated
phishing campaigns, or bypass traditional defenses.

This dual-use dynamic—the central double-edged sword of
LLMs—demands a strategic response that balances innovation with
accountability. Defensive use cases such as federated learning,
DevSecOps integration, and explainable Al show immense promise,
but only when deployed under robust governance structures, ethical
auditability, and transparent development practices.

To effectively translate these collaborative imperatives into
concrete actions, tailored recommendations for specific stakeholders
are essential:

For Policymakers and Regulators: Focus should be on
establishing agile and globally harmonized regulatory frameworks that
encourage responsible Al innovation while mandating baseline
security, transparency, and accountability standards for high-risk LLM
applications in cybersecurity. This includes fostering public-private
partnerships to share threat intelligence and best practices.

For Security Organizations and Practitioners (CISOs, SecOps
teams): Prioritize the development of comprehensive strategies for
integrating LLMs into security workflows, including rigorous testing
and validation of Al tools, continuous red-teaming exercises against Al-
augmented threats, and upskilling security professionals to effectively
leverage and manage these technologies.

For LLM Developers and Al Researchers: Emphasize security-
by-design principles throughout the LLM lifecycle, from data curation
and model training to deployment and monitoring. Invest in research on
inherently safer LLM architectures, bias detection and mitigation
techniques specific to security contexts, and robust mechanisms for
content authenticity and provenance to counter Al-generated
disinformation and malware.

Ultimately, securing the future of LLMs is not just a technical
challenge—it is a societal imperative. Only by embracing both sides of
this double-edged sword can we harness the full potential of LLMs to
defend the digital frontier while minimizing their risk as instruments of
exploitation.
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