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Abstract— Large Language Models (LLMs) and generative AI (GenAI) systems—

such as ChatGPT, Claude, Gemini, LLaMA, Copilot, and Stable Diffusion, developed by 

OpenAI, Anthropic, Google, Meta, Microsoft, and Stability AI, respectively—are 

profoundly transforming digital platforms, marketplaces, and app ecosystems, while 

introducing significant challenges for cybersecurity and user privacy and opening new 

frontiers in high-stakes domains like healthcare diagnostics. This rapid acceleration has 

driven mobile app submissions from 1.8 million in 2020 to 3.0 million in 2024, with a 

projected 3.6 million by 2025. However, while empowering innovation, this technological 

shift presents a critical double-edged sword: concurrently introducing novel and rapidly 

escalating risks to platform integrity, financial trust and compliance, cybersecurity, user 

privacy, and opening new frontiers in high-stakes domains like healthcare diagnostics. 

Our comprehensive analysis reveals alarming trends across diverse abuse vectors, 

including a projected surge in LLM-assisted malware from 2% in 2021 to 50% by 2025. We 

document a nearly tenfold rise in AI-generated Google reviews to 12.21% in 2023, projected 

to reach 30% by 2025. Additionally, we observe a 456% increase in AI-enabled scam reports 

and over a 1500% rise in AI-generated misinformation sites over the past year, alongside a 

projected 900% surge in deepfake fraud by 2025 compared to 2023 levels. In the financial 

sector, LLM-powered threats like synthetic identity fraud and sophisticated AI-generated 

scams are rapidly evolving, necessitating advanced defenses. Despite platforms’ proactive 

use of AI to block millions of policy-violating apps and content, the scale and velocity of 

these threats underscore an urgent and unmet need for scalable integrity infrastructure to 

safeguard digital security and data privacy. Leading platforms such as Google Play, Apple 

App Store, Hugging Face Spaces, GitHub Copilot, OpenAI Plugin Stores, TikTok, 

Facebook, Amazon, Etsy, and Shopify now face unprecedented challenges in maintaining 

integrity at scale. Similarly, the integration of LLMs into clinical diagnostics presents 

unique challenges related to diagnostic accuracy, bias, and patient safety, necessitating 

robust governance. 

Drawing on a review of over 400 academic papers, industry reports, and technical 

documents, this paper presents a comprehensive survey and data-driven analysis of the risks 

LLMs and GenAI pose to platform integrity and financial trust and compliance, and 

medical AI safety. Critically, we propose a strategic roadmap framework for using these 

same technologies to automate review and moderation through semantic code analysis, 

multimodal storefront validation, and intelligent policy auditing; detect abuse and fraud; 

enforce compliance across global jurisdictions (e.g., GDPR, CCPA , FinCEN, SEC, MiFID 

II); and enhance trust, user experience, and safety across digital ecosystems, financial 

systems, and clinical applications. Unlike prior work focused on isolated technical 

components or policy domains, our approach outlines a cross-functional architecture that 

integrates product, engineering, trust & safety, legal, and policy teams to operationalize AI-

driven defenses. We ground our analysis in case studies of major platforms—including 

Google, Apple, Amazon, Meta, and Hugging Face—highlighting deployed LLM-powered 

systems, practical implementation insights, and lessons learned. Specifically, we examine 

how leading financial services platforms (e.g., JPMorgan Chase, Capital One, Stripe, Plaid, 

Revolut) are leveraging LLMs for synthetic identity detection, KYC/AML automation, 

regulatory parsing, and real-time financial scam detection, including the reported impact of 

reducing fraud loss rates by up to 21% and accelerating onboarding by 40–60%. Finally, 

we extend our proposed integrity framework to the domain of clinical diagnostics, 

introducing a novel multimodal AI system that interprets natural-language patient 

symptom descriptions using LLMs, aligns them with image-derived biomarkers, and 

delivers explainable treatment recommendations with physician oversight. We identify 

actionable best practices and emerging opportunities in explainable AI, federated review 

pipelines, and multi-agent compliance parsing. 

We conclude that LLMs—when deployed with transparent governance and robust 

evaluation—can serve as a force multiplier for scalable integrity enforcement. To 

operationalize this vision, we propose Virelya: an envisioned framework and 

implementation blueprint for high-stakes domains like platform integrity, financial trust, 

and healthcare diagnostics. Drawing from successful paradigms in Electronic Design 

Automation (EDA), cybersecurity, and software quality assurance, Virelya is built upon an 

LLM Design & Assurance (LLM-DA) stack—an independent, cross-domain infrastructure 

layer for safety verification, compliance-as-code, and responsible deployment. It provides 

the integrated orchestration, trust, and governance capabilities needed to address the full 

spectrum of post-deployment challenges, offering features like advanced multi-LLM 

routing, agentic memory and planning, RAG evaluation, and audit/compliance tracking. 

This framework provides the operational blueprint for building trustworthy, compliant 

platforms and clinical systems in the generative AI era. 

Keywords— Large Language Models (LLMs), Generative AI, Cybersecurity, Platform 

Integrity, Review Automation, Content Moderation, Abuse Detection, Fraud Prevention, 

Regulatory Compliance, Trust and Safety, Digital Marketplaces, Privacy, App Ecosystems, 

Federated Review Systems, Explainable AI, AI Governance, Synthetic Content, Developer 

Experience. 
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I. INTRODUCTION  

Platform ecosystems are foundational to modern 

communication, commerce, content creation, and productivity, 

serving as critical intermediaries in the digital economy [1]. These 



2 

 

dynamic environments, encompassing vast marketplaces such as 

Google Play, Apple App Store, Microsoft Store, and Amazon 

Appstore, along with rapidly emerging generative AI (GenAI) 

platforms like Hugging Face Spaces, GitHub Copilot, and OpenAI 

Plugin Stores, host billions of users and trillions of digital 

interactions annually [2], [3], [4]. Ensuring trust, platform integrity, 

and comprehensive regulatory compliance has thus become a 

paramount and increasingly complex concern for operators of these 

digital domains [5]. These environments face escalating pressures 

from multiple fronts: an exponential surge in content and app 

submissions, the proliferation of increasingly sophisticated abuse 

strategies, and heightened regulatory scrutiny driven by a growing 

patchwork of global frameworks such as the General Data 

Protection Regulation (GDPR) [6], the California Consumer 

Privacy Act (CCPA) [7], and the Digital Services Act (DSA) [8]. 

Meeting these multifaceted challenges demands the development 

and deployment of scalable, intelligent, and adaptive review and 

governance mechanisms that can keep pace with both rapid 

technological advancements and the continuously evolving threat 

landscapes [9], [10], [11]. 

The advent of Large Language Models (LLMs) and GenAI 

systems—such as OpenAI's ChatGPT [12], Google's Gemini [13], 

Meta's LLaMA [14], text-to-image models like DALL·E and Stable 

Diffusion [15], and code generation tools like GitHub Copilot 

[16]—is fundamentally transforming this digital landscape. While 

these powerful models are enabling unprecedented faster 

development cycles, creative tooling, and highly personalized 

automation across a myriad of industries and user experiences [17], 

[18], they simultaneously introduce a significant new class of risks. 

These novel risks include the generation of insecure and vulnerable 

code [19], [20], the creation of highly deceptive storefronts and 

product listings [21], the widespread proliferation of synthetic 

content (e.g., deepfakes, AI-generated text, fake reviews) designed 

to mislead or defraud [22], [23], [24], the escalation of sophisticated 

AI-generated fraud at scale [25], and the development of cunning 

methods for scalable policy evasion that can bypass traditional 

detection systems [26]. Consequently, digital platforms, from 

established app stores to nascent generative AI marketplaces and 

sophisticated e-commerce sites, now face unprecedented challenges 

in maintaining platform integrity at scale while fostering innovation 

[27], [28]. Beyond these digital ecosystems, the profound 

capabilities of LLMs are also extending into high-stakes domains 

like healthcare, where the application of AI in clinical diagnostics 

promises transformative benefits but introduces equally significant 

safety and ethical considerations, including potential for diagnostic 

errors, bias, and privacy breaches [29], [30], [31]. 

This paper critically examines the dual-use nature of LLMs and 

generative AI within the intricate context of both digital platform 

integrity and clinical AI safety. We explore how these powerful 

technologies, while enabling remarkable productivity and 

creativity, can also be weaponized by malicious actors to undermine 

trust and safety [32], [33], or, in healthcare, lead to critical 

misdiagnoses if not governed responsibly. To counteract these 

emerging threats, we present defensive architectures that 

strategically leverage LLMs for critical safety operations. These 

include advanced static code analysis for identifying hidden 

vulnerabilities and malicious logic [34], sophisticated storefront 

validation to prevent misrepresentation and misleading claims [21], 

intelligent content moderation systems capable of discerning subtle 

policy violations in user-generated content [35], comprehensive 

compliance auditing against a complex web of global regulations 

[36], and robust, adaptive abuse and fraud detection mechanisms 

[25]. 

In 'Intelligent Policy Auditing,' LLMs can be trained on vast 

corpuses of legal and regulatory texts (e.g., GDPR, CCPA, DSA 

provisions) to not only parse and summarize policy documents but 

also to identify logical inconsistencies, omissions, or misalignments 

with declared app behaviors. This includes flagging ambiguous 

clauses, ensuring consistency across various sections, and 

generating compliance scores by mapping policy statements to 

established legal obligations. 

For 'Multimodal Storefront Validation,' LLMs, in conjunction 

with other AI models, can cross-reference textual claims in 

descriptions and privacy policies with visual content (screenshots, 

promotional videos) and, crucially, with the actual runtime behavior 

of the app or service. This involves techniques like visual question 

answering (VQA) on screenshots to verify advertised UI elements, 

and semantic embedding comparisons between text and extracted 

features from dynamic analysis logs to detect inconsistencies, 

moving beyond simple keyword matching to discern semantic 

deception. 

Specifically, LLMs can be fine-tuned to recognize patterns 

indicative of vulnerabilities, such as insecure data flows or improper 

API usage, by leveraging their understanding of both syntax and 

semantic intent. This moves beyond traditional rule-based or 

signature-driven static analysis by identifying novel attack vectors 

and polymorphic malware through advanced techniques like graph 

neural networks on Abstract Syntax Trees (ASTs) or deep learning 

on bytecode representations to pinpoint semantic vulnerabilities. 

Crucially, this paper extends these integrity principles to clinical 

AI, proposing a novel multimodal system for diagnostics that 

interprets natural-language patient symptom descriptions using 

LLMs, aligns them with imaging-derived biomarkers, and delivers 

explainable diagnostic and treatment recommendations with 

essential physician-in-the-loop oversight. This application 

highlights the framework's adaptability to the highest-stakes 

environments, demanding unparalleled trustworthiness and 

transparency [37], [38]. 

We further propose a cross-functional operational model that 

emphasizes tightly orchestrated collaboration spanning product 

management, engineering, trust & safety operations, legal, and 

policy teams. This integrated approach is essential to effectively 

govern AI-driven workflows and ensure a holistic, proactive 

defense posture for platform security and broader AI safety [39], 

[40], [41]. 

The effectiveness of LLM-powered defenses, particularly for 

safety and ethical considerations, hinges on robust 'human-in-the-

loop' oversight. This operational model demands clearly defined 

workflows for human review of flagged content, escalation 

protocols for complex cases, and continuous feedback mechanisms 

to refine model performance. Challenges include managing 

reviewer fatigue, ensuring consistency in human judgment, and 

effectively training human experts to interpret complex AI outputs, 
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requiring a symbiotic relationship between AI and human 

intelligence. 

Drawing from current industry initiatives—including Google's 

comprehensive SAFE Framework [42], their proactive App 

Defense Alliance (ADA) [43], and advanced Play Protect real-time 

scanning systems [44], as well as Apple’s innovative LLM-powered 

review summarization and privacy enhancements [45]—we extract 

actionable best practices and identify emerging opportunities. These 

opportunities include advancements in explainable AI (XAI) to 

provide transparent rationales for moderation decisions [46], the 

development of federated review pipelines for enhanced privacy 

and distributed threat intelligence [47], and the implementation of 

multi-agent compliance parsing systems for adaptive and dynamic 

regulatory enforcement across diverse jurisdictions [48]. 

The concept of 'Adaptive Multi-Agent Compliance Parsing' 

involves deploying a network of specialized LLM-powered agents, 

each focused on a specific regulatory domain or legal jurisdiction. 

These agents can collaboratively interpret evolving regulations, 

detect emerging compliance gaps in real-time, and dynamically 

update enforcement rules. This decentralized yet coordinated 

approach allows for more agile responses to global regulatory shifts 

and facilitates cross-jurisdictional consistency checks. 

We argue that with responsible deployment, continuous 

monitoring, and robust governance frameworks, LLMs can serve as 

a force multiplier, empowering platforms to scale their enforcement 

capabilities, counter evolving threats more effectively, and preserve 

user trust across rapidly advancing app ecosystems, generative AI 

marketplaces, and broader digital commerce platforms [49], [50]. 

While individual LLM-based integrity mechanisms have been 

studied in isolation [51], this paper provides the first unified, cross-

platform roadmap—spanning app stores, generative marketplaces, 

digital commerce, and clinical diagnostics—for operationalizing 

LLMs in platform governance and high-stakes AI applications. This 

integrated approach highlights how shared challenges and solutions 

can be applied across diverse digital environments to foster a safer, 

more trustworthy, and compliant online experience for billions of 

global users [52]. Prior research often focuses on isolated 

domains—such as mobile app moderation, generative AI safety, or 

content review within e-commerce. This paper differentiates itself 

by synthesizing these traditionally siloed perspectives into an 

integrated blueprint. By aligning governance challenges and 

mitigation strategies across app stores, generative AI plugin 

marketplaces, digital commerce platforms, and the emerging field 

of AI-assisted medicine, it provides a unified model for AI-driven 

platform integrity. This level of cross-platform synthesis, paired 

with a cross-functional team model, has not been articulated in prior 

literature. 

The development of this strategic roadmap framework was 

informed by a multi-faceted methodology, combining an extensive 

systematic literature review of academic and industry publications, 

in-depth analysis of major platform transparency reports and 

security initiatives, and synthesis of best practices derived from 

expert interviews with product leaders, engineering heads, and trust 

& safety professionals across leading digital ecosystems. 

The remainder of this paper is structured as follows: Section II 

elaborates on the dual-use nature of LLMs, detailing both their 

transformative benefits and the novel risks they introduce across 

digital platforms and in sensitive applications like healthcare. 

Section III provides a comprehensive analysis of key threat vectors 

and security risks directly resulting from LLM-assisted 

development and content creation. In Section IV, we delve into the 

defensive applications of LLMs for reviewer automation and 

platform integrity, covering techniques like semantic code analysis 

and multimodal cross-validation. Section V outlines the critical role 

of cross-functional collaboration for platform integrity: building 

safe apps and digital ecosystems, emphasizing the integration of 

product, engineering, trust & safety, legal, and policy teams. 

Section VI presents in-depth case studies of major industry 

initiatives by platforms such as Google, Apple, Amazon, Meta, and 

Hugging Face, showcasing real-world LLM integration for 

integrity. Section VII discusses future directions and research 

opportunities, while Section VIII addresses the limitations and 

ongoing challenges in this evolving field. Section IX outlines the 

strategic landscape of the LLM ecosystem. Section X proposes the 

LLM Design & Assurance (LLM-DA) Stack as a cross-domain 

blueprint for responsible AI infrastructure. Section XI then extends 

this integrity framework to the critical domain of clinical 

diagnostics, detailing its application in multimodal mapping, 

diagnostic suggestions, and specialized governance. Finally, 

Section XII provides the conclusion and summarizes our key 

findings. 

 

II. THE DOUBLE-EDGED SWORD OF LLMS IN DIGITAL 

PLATFORMS AND APP ECOSYSTEMS 

The proliferation of Large Language Models (LLMs) and 

generative AI systems has fundamentally reshaped the digital 

landscape, significantly accelerating app development by 

democratizing access to sophisticated software creation. Tools such 

as OpenAI’s ChatGPT [12], Google’s Gemini [13], and Microsoft’s 

Copilot [16] enable even non-experts to generate complete app 

codebases, design user interfaces, craft compelling storefront 

content, draft privacy policies, and produce extensive marketing 

copy [17], [53]. This accessibility has undeniably driven a 

remarkable surge in the volume and diversity of app submissions 

across major platforms like Google Play and Apple App Store [54], 

[55]. Similar transformative trends are rapidly emerging across 

broader digital ecosystems, including specialized LLM plugin 

stores, burgeoning Gen-AI marketplaces (e.g., Hugging Face 

Spaces, OpenAI Plugin Stores), and traditional e-commerce 

platforms (e.g., Amazon, Etsy, Shopify) [56], [57]. 

In these environments, AI-generated content and automation 

workflows accelerate user-generated storefronts, service listings, 

and digital products, often with limited human oversight [58]. As 

indicated in Table 1 and illustrated in Fig. 1 (a), the number of 

mobile app submissions has shown a sharp upward trajectory. 

Starting from 1.8 million in 2020 and reaching 2.0 million in 2022, 

a notable acceleration was observed following the widespread 

introduction of LLM-based developer tools [54]. Submissions 

surged to 2.4 million in 2023, and further to 3.0 million in 2024, 

with a projected 3.6 million in 2025. This significant increase, 

particularly evident in the jump from 2.0 million in 2022 to a 

projected 3.6 million in 2025, highlights a paradigm shift from 

traditional, human-intensive development to highly automated, AI-
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assisted creation. This accessibility has not only driven a 

remarkable surge in the volume and diversity of app submissions, 

but also significantly reduced the time and expertise required for 

prototyping, iterating, and even multi-platform deployment. The 

rise of low-code/no-code paradigms, greatly enhanced by LLMs, 

further amplifies this acceleration and shifts development power 

into the hands of a broader user base [406]. In parallel, as indicated 

in Table 2 and illustrated in Fig. 1 (b), the share of malware 

generated by LLMs has grown from 2% in 2021 to a projected 35% 

by 2025, signaling an alarming trend in scalable, AI-powered cyber 

threats [74], [407]. 

Table 1. Growth of mobile app submissions before and after the 

emergence of LLM-enhanced development tools. 

Year 
App Submissions 

(millions) 

2020 1.8 

2021 1.9 

2022 2.0 

2023 2.4 

2024 3.0 

2025 (Projected) 3.6 

Table 2. Annual malware detections (2021–2024) based on AV-TEST data 

and projected estimate for 2025. The table includes estimated counts and 

percentages of LLM-assisted malware, illustrating their accelerating share of 

global threats due to increased adoption of generative AI in cyberattacks. 

Year 
Annual Malware 

Detections (M) 

LLM-Assisted 

Malware (%) 

LLM-Assisted 

Malware (M) 

2021 83.3 2 1.666 

2022 104.5 5 5.23 

2023 150.0 15 22.5 

2024 184.3 30 55.29 

2025 221.2 50 110.6 

 

 

(a) 

 

(b) 

Fig. 1. (a) Growth of Mobile App Submissions from 2020 to 2025, 

highlighting acceleration after LLM-based developer tools introduction. (b) 

Estimated annual global malware detections with LLM-assisted contribution 

(2021–2025). Stacked bars show total malware cases, with the red portion 

representing LLM-assisted threats. The black line highlights the rapid growth 

of AI-driven malware, rising from 2% to 50% of all detections over the five-

year period. 

Accordingly, this profound empowerment represents a double-

edged sword. While fostering unprecedented innovation, LLMs 

simultaneously lower the barriers for malicious actors to operate 

and scale abuse across digital platforms and app stores [32], [33], 

[66]. The very same generative capabilities that streamline 

legitimate application development can be repurposed by bad actors 

to create sophisticated polymorphic malware that evades traditional 

signature-based detection, generate highly deceptive storefronts 

designed to trick users, produce non-compliant privacy policies that 

mask illicit data practices, and forge convincing social engineering 

interfaces at an unprecedented scale [19], [22], [26].  

While LLM-generated content existed in smaller capacities 

prior, a dramatic shift in the landscape of digital abuse became 

evident starting in late 2022. For instance, as indicated in Table 3 

and illustrated in Fig. 2, the percentage of AI-generated Google 

reviews, which stood at a mere 1.42% in 2022, saw an explosive 

surge coinciding with the widespread release of powerful Large 

Language Models like ChatGPT. This figure jumped nearly tenfold 

to 12.21% in 2023 and is projected to reach 19% by the end of 2024 

[59]. Using polynomial or exponential regression based on this 

trend, a reasonable projection for 2025 is in the range of 27%–30%. 

This rapid acceleration underscores how the accessibility and 

sophistication of generative AI tools quickly provided malicious 

actors with unprecedented capabilities to automate the creation of 

deceptive content at scale across digital platforms.  

Table 3. Share of Google reviews likely AI-generated from 2021 to 2025 

(2025 projected). A sharp rise begins in 2023 with the release of LLMs like 

ChatGPT, with 2025 estimates reaching up to 30%. 

Year % of Google Reviews Likely AI-

Generated 

2021 0.9 

2022 1.42 

2023 12.21 

2024 19 

2025 (projected) 27%–30% 
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Fig. 2. Percentage of Google reviews likely generated by AI from 2021 to 

2025 (2025 projected). The data shows a marked surge beginning in 2023, 

coinciding with the public release of powerful LLMs like ChatGPT. The 

projected trend for 2025 suggests continued growth in synthetic review 

content, reaching as high as 30%. 

Beyond reviews, as indicated in Table 4 and illustrated in Fig. 

3, the scope of LLM/GenAI-assisted digital abuse is rapidly 

expanding. For instance, AI-enabled scam reports saw a 456% 

increase between May 2023 and April 2024 [60], while AI-

generated email threats surged 31-fold (over 3,000%) in 2023 alone 

[61]. Deepfake attacks are also projected to increase by more than 

900% globally in 2025 compared with 2023 levels [62], [63]. 

Furthermore, the proliferation of AI misinformation sites has been 

dramatic, with over a 1,500% increase observed from May 2023 to 

April 2024 [64]. These trends, as summarized in Table 4, highlight 

a systemic expansion of AI-facilitated malicious activities across 

various digital domains. 

Table 4. Key Trends in LLM/GenAI-Assisted Digital Abuse 

Abuse Type Key Trend / Statistic Source 

Fake Reviews 
3,333% increase in AI-generated 

Google reviews (2019-2025) 
Originality.ai [59] 

AI-Enabled 

Scams 

456% increase in scam reports 

(from May 2023 to April 2024) 
TRM Labs [60] 

AI-Generated 

Email Threats 

31-fold surge (or 3,000%+ 

increase) in 2023 
Trend Micro [61] 

Deepfake 

Attacks 

Projected 900%+ increase in 

global incidents (2024) 

Deep Instinct [62], 

Sumsub [63] 

AI 

Misinformation 

Sites 

Over 1500% increase in AI 

news sites (from May 2023 to 

April 2024) 

NewsGuard [64] 

 

 

Fig. 3. Log-scaled comparison of GenAI-driven abuse trends (2019–

2025), covering AI-generated reviews, scams, deepfake incidents, 

misinformation sites, and email threats. Logarithmic scale highlights large 

disparities across abuse types. 

This inherent dual-use nature of LLMs—enabling both 

legitimate innovation and scalable abuse—is conceptually 

illustrated in Fig. 4 [65]. 

 

 

Fig. 4. Dual-use nature of LLMs in app ecosystems: enabling both 

innovation and abuse at scale 

This section delves into the intricate dual impact of LLMs on 

app and digital platform ecosystems, emphasizing how they 

simultaneously enable widespread innovation while profoundly 

multiplying existing and introducing new vectors of risk. 

 

A. Lowered Barriers to App Development (Opportunity and 

Risk) 

By profoundly simplifying complex tasks such as code 

generation, user interface (UI) design, content creation, and legal 

policy drafting, LLMs significantly lower the technical and 

operational threshold for individuals and organizations to 

conceptualize, build, and deploy digital applications [17], [18]. This 

democratization of sophisticated software creation fuels 

unprecedented innovation, fosters a greater diversity of digital 

offerings, and promotes global inclusion by enabling entrepreneurs 

from diverse backgrounds to participate in the digital economy  

[67].  

Beyond solely security and compliance, LLM-driven review 

automation can also significantly enhance the legitimate developer 

experience by providing faster app approval times, clearer and more 
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contextualized feedback on policy violations, and even proactive 

suggestions for improving security posture. However, this also 

necessitates careful design to minimize false positives and avoid 

creating unnecessary friction or frustration for developers due to 

opaque AI decisions. New startups and independent developers can 

now prototype, launch, and iterate products at record speed, 

contributing to increasingly vibrant and competitive app 

marketplaces [53], [68]. 

Yet, the inherent downside of this accessibility is critically 

important: developers, particularly those lacking deep expertise in 

cybersecurity, data privacy, or complex regulatory compliance, 

may inadvertently introduce significant vulnerabilities into their AI-

generated or AI-assisted applications [19], [69], [70]. Common 

security pitfalls include missing or insufficient input validation, 

insecure data storage practices (e.g., unencrypted user data on 

device or servers), improper permission management (e.g., 

requesting excessive permissions beyond necessary app 

functionality), and the blind exposure to or integration of unsafe 

third-party SDKs without proper vetting [16], [71]. These issues 

often stem from an over-reliance on LLM outputs without critical 

human review, validation, or an understanding of underlying 

security principles [72]. Table 5 summarizes common 

vulnerabilities typically introduced by inexperienced LLM-driven 

development efforts. 

Table 5. Common vulnerabilities introduced by inexperienced LLM-

driven app development. 

Vulnerability Description 

Missing Input Validation 

LLMs may generate input forms without 

enforcing sanitization, enabling 

injection attacks. 

Insecure Data Storage 
User data may be stored unencrypted on 

the device or servers. 

Improper Permission 

Management 

LLMs may request broad permissions 

beyond necessary app functionality. 

Unsafe SDK Integrations 

LLMs suggest popular SDKs without 

checking their privacy or security 

history. 

Exposure of Hardcoded 

Credentials 

Credentials accidentally embedded in 

code, making them retrievable. 

Lack of Rate Limiting 
Generated apps might omit throttling 

protections for APIs or login attempts. 

Weak Authentication 

Logic 

Simplistic authentication that fails to 

prevent unauthorized access. 

Unsecured API 

Communication 

HTTP communication without TLS, 

risking man-in-the-middle attacks. 
 

Beyond these technical vulnerabilities, the sheer volume and 

velocity of app submissions—a direct consequence of LLM-

assisted development—significantly strain traditional, often 

manual, app review pipelines [54]. This immense burden makes it 

increasingly challenging for platforms to maintain consistent 

quality and safety standards, potentially leading to a higher 

incidence of harmful applications reaching end-users [73].

 

B. New Vectors for Abuse and Vulnerabilities 

Sophisticated threat actors are quickly adapting to the 

capabilities of LLMs, leveraging them to industrialize the creation 

and deployment of harmful applications and deceptive content [32], 

[74]. This marks a significant shift from manual, labor-intensive 

abuse campaigns to highly automated, scalable operations. 

Common abuse patterns and novel vulnerabilities enabled by LLMs 

include: 

Obfuscated Malware Generation: LLMs can rapidly create 

numerous code variants, including polymorphic malware that 

constantly changes its signature, making it exceedingly difficult for 

traditional static signature detection systems to identify [10], [75]. 

They can also assist in generating highly obfuscated malicious logic 

that blends seamlessly with benign code [76]. 

Deceptive Storefront Content and Synthetic Media: LLMs 

excel at crafting persuasive and legitimate-looking app descriptions, 

screenshots, promotional videos, and privacy policies that 

effectively mask underlying malicious behavior or misrepresent app 

functionality [21], [22]. Furthermore, generative AI can produce 

synthetic content such as deepfake videos of fake testimonials, AI-

generated positive reviews, or fabricated user interfaces to enhance 

deception [23], [77]. 

Automated Policy Circumvention: Malicious actors can 

leverage LLMs to generate multiple subtle variations of an app or 

content, designed to bypass review heuristics or automated 

moderation systems. This "evasion by mutation" strategy makes it 

difficult for platforms to enforce policies consistently across a large 

volume of submissions [26], [78]. 

Scalable Social Engineering: LLMs can generate highly 

personalized and convincing social engineering interfaces, prompts, 

and phishing attempts within apps or content. They can simulate 

user interaction patterns, allowing malicious apps to feign normal 

behavior during dynamic analysis, thereby evading behavioral 

detection [25], [79]. 

Fig. 5 summarizes the principal types of LLM-enabled abuse 

tactics observed across app ecosystems, highlighting their strategic 

deployment against platform integrity. 

 

Fig. 5. Common LLM-enabled abuse tactics observed in app ecosystems. 

These evolving dynamics necessitate a fundamental shift in how 

platform operators approach trust and safety. Traditional manual, 

rule-based, or simplistic signature-based review strategies are 

increasingly inadequate [73]. Instead, platforms must transition 

toward AI-augmented, adaptive enforcement models that can 

understand semantic intent, detect subtle behavioral anomalies, and 
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continuously learn from new attack vectors [9], [28]. Beyond 

mobile applications, the risks extend widely: LLMs have been 

observed creating fake e-commerce storefronts on platforms like 

Amazon and Shopify [80], generating misleading AI plugins on 

marketplaces such as OpenAI Plugin Stores and Hugging Face 

Spaces [56], and fabricating synthetic service listings that mimic 

legitimate patterns to evade review [57]. The capabilities of LLMs 

can also be turned defensively to audit complex artifacts like model 

cards, datasets, and documentation within platforms like Hugging 

Face Model Hub, helping to surface inconsistencies between 

claimed capabilities and actual behavior, as well as detecting 

policy-violating content embedded in training data or generated 

output samples [81]. This underscores the urgent need for a 

proactive and adaptable AI-driven defense [7], [8].

 

C. How Platforms Can Harness LLMs Defensively 

Rather than viewing LLMs solely as a source of amplified risk, 

platforms can strategically utilize the same advanced generative and 

analytical capabilities for defense, transforming them into powerful 

tools for scaling trust and safety operations [34], [49]. This 

proactive approach involves leveraging LLMs to augment human 

reviewers and automate detection processes, thereby serving as a 

critical force multiplier in the ongoing fight against platform abuse 

[28], [35]. Table 6 outlines major defensive capabilities that 

platforms can adopt by strategically leveraging LLM technologies. 

Early initiatives by leading platforms such as Google and Apple 

clearly demonstrate the practical viability and significant impact of 

LLM and AI integration [42], [45], with Google, for example, 

further expanding its AI-powered, on-device scam detection in 

Messages and real-time app scanning capabilities through Google 

Play Protect in 2025 to counter evolving threats [82]. When 

properly trained, fine-tuned, and deployed with robust human 

oversight and feedback loops, LLMs can serve as a potent force 

multiplier for scaling trust and safety operations far beyond the 

capabilities of traditional methods [35], [52]. This strategic shift 

from reactive to proactive defense is crucial for maintaining the 

integrity and trustworthiness of digital ecosystems. 

Table 6. Defensive use cases for LLMs in app store safety operations. 

 

In the following sections, we will delve deeper into how LLMs 

can be strategically embedded into various stages of the app review 

lifecycle, from initial submission and static/dynamic analysis to 

continuous post-deployment monitoring. We will also explore their 

role in enhancing regulatory compliance enforcement, improving 

the developer experience through clearer communication, and 

refining sensitive content detection workflows, ultimately 

contributing to a safer digital environment for all users. 

 

III. THREAT VECTORS AND SECURITY RISKS INTRODUCED BY 

LLM-BASED DEVELOPMENT 

The introduction of LLMs into mobile app development 

pipelines has undeniably unlocked significant productivity gains 

and fostered unprecedented innovation [17], [53]. However, this 

transformative shift has simultaneously ushered in a new class of 

security, privacy, and compliance threats across app ecosystems and 

digital platforms [22], [26], [74]. These risks emerge not only from 

malicious actors deliberately abusing LLMs to generate harmful 

content or applications, but also from inexperienced or unwitting 

developers who inadvertently introduce vulnerabilities through 

automated code and content generation [72]. This section 

systematically analyzes the primary threat vectors and security risks 

directly resulting from LLM-assisted app development and content 

creation across various digital platforms.  

Beyond intentional maliciousness, a significant, unintentional 

risk stems from LLMs' propensity for 'hallucination'—generating 

plausible-sounding but factually incorrect or nonsensical outputs. In 

the context of security, this can lead to the production of seemingly 

correct but critically flawed code, erroneous policy documentation, 

or deceptive content even by well-meaning developers, 

necessitating robust validation mechanisms and meticulous human-

in-the-loop oversight to prevent the propagation of deep and subtle 

vulnerabilities or misrepresentations.  

This section systematically analyzes the primary threat vectors 

and security risks directly resulting from LLM-assisted app 

development and content creation across various digital platforms. 

 

A. Insecure AI-Generated Code 

One of the most significant and insidious threats introduced by 

LLMs is their propensity to generate syntactically correct but 

often semantically insecure code [19], [83], [84]. Developers 

relying heavily on model outputs, especially without deep security 

expertise or rigorous manual review, may inadvertently ship 

applications with critical vulnerabilities. These vulnerabilities 

include: 

Missing or Inadequate Input Validation: LLMs may generate 

code that fails to properly sanitize or validate user inputs, creating 

fertile ground for various injection attacks (e.g., SQL Injection, 

Cross-Site Scripting (XSS), command injection) that can lead to 

data breaches or remote code execution [85], [86], [87]. 

Improper Authentication and Authorization Flows: AI-

generated code might implement weak or flawed authentication 

mechanisms (e.g., simplistic password checks, insecure token 

LLM-Powered Capability Strategic Benefit 

Static Code Analysis for 

Hidden Threats 

Detect polymorphic and obfuscated 

malware faster than traditional static 

analysis. 

Dynamic Behavior Monitoring 
Identify runtime evasion tactics and 

suspicious dynamic behaviors. 

Cross-Validation of Storefront 

and App Behavior 

Ensure consistency between what the app 

claims and what it actually does. 

Privacy Policy Auditing 
Spot missing disclosures and inconsistent 

data usage declarations. 

User Review Summarization 

and Abuse Detection 

Prioritize real-world abuse cases from 

user feedback at scale. 

Compliance Check Against 

Regional Regulations 

Automate GDPR, CCPA, and DSA 

compliance enforcement. 

Risk-Based Developer Trust 

Scoring 

Fast-track trusted developers, slow down 

high-risk new submitters. 
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handling) or incorrect authorization logic, enabling unauthorized 

access, privilege escalation, or account hijacking [88], [89]. 

Hardcoded API Keys or Sensitive Credentials: A common 

vulnerability is the accidental embedding of sensitive information, 

such as API keys, cryptographic secrets, or database credentials, 

directly within the application's source code, making them easily 

retrievable by attackers [90], [91]. 

Excessive Permission Requests: LLMs might suggest or 

generate code that requests broad, unnecessary device permissions 

(e.g., background location, microphone access, contact list) beyond 

what the app's core functionality requires, significantly expanding 

the attack surface and raising privacy concerns [69]. 

Embedding Vulnerable Dependencies: While LLMs can 

suggest popular third-party libraries and SDKs, they may not 

adequately vet these dependencies for known vulnerabilities 

(CVEs) or their privacy implications, thereby introducing supply 

chain risks into the application [71], [92], [93]. 

Insufficient Data Encryption: Generated code might neglect 

to implement robust encryption for user data at rest (on device or 

servers) or in transit, leaving sensitive information exposed to theft 

or unauthorized access [94]. 

Lack of Rate Limiting and Brute-Force Protections: 

Automated generation might omit crucial security measures like 

rate limiting for API endpoints or login attempts, making 

applications susceptible to brute-force attacks or denial-of-service 

(DoS) attempts [95]. 

Unsecured API Communication: LLMs might generate code 

that uses insecure communication protocols (e.g., HTTP instead of 

HTTPS/TLS) for transmitting sensitive data to backend servers, 

making the app vulnerable to man-in-the-middle (MITM) attacks 

and data interception [96]. 

A recent empirical study by Pearce et al. [16] found that a 

significant portion (40%) of code generated by GitHub Copilot 

contained security vulnerabilities, underscoring the urgent need for 

app stores and platforms to augment traditional static and dynamic 

analysis with more intelligent, LLM-aware detection capabilities to 

identify risks stemming from AI-produced software artifacts [19], 

[72]. Table 7 summarizes frequent coding risks and their potential 

impacts resulting from insecure LLM-generated code. 

Table 7. Common security vulnerabilities introduced by LLM-assisted 

code generation. 

Vulnerability Impact 

Missing Input Validation 
Enables injection attacks (SQLi, XSS) and 

other input manipulation exploits. 

Improper Authentication 

Flows 

Allows unauthorized access or privilege 

escalation by attackers. 

Hardcoded API Keys or 

Credentials 

Leaks sensitive credentials, enabling 

service hijacking or impersonation. 

Excessive Permission 

Requests 

Expands the attack surface by exposing 

unnecessary device capabilities. 

Embedding Vulnerable 

Dependencies 

Introduces known vulnerabilities into the 

app supply chain. 

Insufficient Data 

Encryption 

Exposes user data at rest to theft or 

unauthorized access. 

Insecure API 

Communication 

Risks man-in-the-middle attacks due to 

unprotected data transmission. 

 

B. Storefront Misrepresentation and Synthetic Content 

App metadata, including titles, descriptions, screenshots, 

promotional videos, and privacy labels, is increasingly being 

generated or enhanced by LLM and GenAI systems. While this can 

significantly improve marketing quality and reach for legitimate 

developers, it simultaneously enables deceptive actors to craft 

highly convincing and misleading storefronts at an unprecedented 

scale and speed [21], [57], [98]. Typical abuse patterns enabled by 

such generative capabilities include: 

False Advertising of Features or Functionality: Apps might 

claim "no ads" while embedding aggressive advertising SDKs, or 

market themselves as "offline-only" while requiring persistent 

internet access for core features [97]. 

Misleading Privacy Claims: Developers might use LLMs to 

generate privacy labels that claim "no data collection" or "HIPAA-

compliant" (for health apps) without any actual evidence or 

adherence to such standards, thereby deceiving users about data 

handling practices [14], [99]. 

Fake Testimonials and Reviews: LLMs can produce realistic-

sounding positive reviews and user testimonials, inflating an app's 

perceived quality or trustworthiness and manipulating user 

acquisition [23], [100]. 

Synthetic Visuals and Videos: Generative AI models can 

create highly polished but entirely fabricated screenshots or 

promotional videos that misrepresent the app's actual user interface 

or functionality, leading to "bait-and-switch" scenarios [77], [101]. 

Fig. 6 visualizes examples of storefront misrepresentation 

patterns and their associated real risks, highlighting the various 

deceptive tactics employed by malicious actors. Detecting such 

inconsistencies requires sophisticated multimodal cross-validation 

of app behavior against storefront claims, moving beyond simple 

keyword matching to semantic understanding and behavioral 

analysis [21], [97]. This requires platforms to correlate information 

from various sources (text, images, code) to build a coherent 

understanding of an app's true nature. 
 

 

Fig. 6. Common patterns of storefront misrepresentation enabled by 

LLMs. 
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C.  Fake or Inconsistent Policy Documentation 

The ability of LLMs to rapidly generate legal and compliance 

documentation, such as privacy policies, terms of service, and end-

user license agreements (EULAs), is a double-edged sword [26], 

[102]. While this can assist developers in drafting complex 

documents quickly, it often results in policies that are either 

misaligned with actual app behaviors or are deliberately deceptive 

[14], [103]. Common issues arising from LLM-generated policy 

documentation include: 

Omission of Sensitive Data Collection: Policies may explicitly 

state "no data collection" or fail to mention the collection of 

sensitive data categories (e.g., precise location, contacts, 

microphone audio, health data, children’s data), even when the app's 

code actively requests and transmits such information [14], [104]. 

Non-Disclosure of Third-Party SDKs and Data Sharing: 

LLM-generated policies frequently omit any mention of third-party 

SDKs (e.g., ad networks, analytics providers, payment processors) 

embedded within the app that collect or share user data, creating a 

critical transparency gap [16], [105]. 

Vague or Contradictory Language: Policies might use overly 

generic or ambiguous language regarding data usage, sharing, or 

retention, making it difficult for users to understand their rights or 

for regulators to assess compliance. In some cases, different 

sections of the same document or linked documents may contain 

conflicting statements [103]. 

Incorrect User Consent Flow Explanations: Policies might 

describe robust user consent mechanisms or opt-out options (e.g., 

"users can easily opt out of data sharing") that are not actually 

implemented or are intentionally obfuscated within the app's user 

interface [106]. 

Table 8 provides real-world examples of common mismatches 

between AI-generated privacy policies and actual app behaviors, 

illustrating the challenges this poses for user privacy and regulatory 

oversight. Traditional manual policy review methods are 

fundamentally inadequate for catching such sophisticated and 

scalable issues. LLM-driven semantic analysis of policies, cross-

referenced with dynamic analysis of app code and network 

behaviors, is becoming increasingly necessary to identify these 

inconsistencies at scale [36], [103]. 

Table 8. Common inconsistencies between AI-generated privacy policies 

and actual app behaviors. 

Mismatch Type Example/Impact 

Privacy Policy Omits 

Data Collection 

Policy claims 'no data collection' but app 

requests contacts, location, microphone 

access. 

Privacy Policy Omits 

Third-Party SDK Usage 

Policy fails to mention ad networks or 

analytics SDKs embedded within the app. 

Vague Language on 

Data Sharing 

Policy says 'may share information' without 

specifying purposes or recipients. 

Incorrect User Consent 

Flow Explanation 

Policy claims users can opt out easily, but no 

in-app mechanism is provided. 

Non-Disclosure of 

Sensitive Data 

Categories 

Policy ignores sensitive data collection like 

health data, children’s data, or financial info. 

Conflicting Statements 

Across Documents 

Terms of Service says one thing, while 

Privacy Policy contradicts it, creating 

compliance risks. 

 

D. Unsafe SDK Integrations and Polymorphic Abuse 

LLMs, when prompted for coding solutions or feature 

implementations, may suggest or integrate third-party SDKs that 

are either inherently risky, non-compliant with privacy regulations, 

aggressively monetizing user data, or vulnerable to supply chain 

attacks [16], [92]. Without adequate developer scrutiny, these SDKs 

can be blindly embedded, exposing applications to cascading 

privacy and security risks. 

Many modern apps embed numerous third-party libraries for a 

variety of functionalities, including analytics, advertising, 

payments, social media integration, or user engagement. When 

LLMs are queried for "best SDKs" or "how to implement X feature" 

without proper security or privacy context, they may suggest 

libraries that are: 

Non-compliant with Privacy Regulations: Exporting user 

data to restricted regions, failing to provide proper consent 

mechanisms, or collecting data beyond the scope of a privacy policy 

[69], [105]. 

Aggressively Monetizing User Data: SDKs designed 

primarily for advertising or data brokerage may excessively collect 

and sell user data without clear disclosure or control, leading to user 

backlash and regulatory fines [99], [107]. 

Vulnerable to Supply Chain Attacks: Obsolete, poorly 

maintained, or maliciously tainted SDKs can act as a backdoor, 

allowing attackers to inject malware, exfiltrate data, or compromise 

the app's integrity [92], [108]. 

Fig. 7 illustrates how unsafe SDK integrations can expose apps 

to cascading privacy and security risks, creating a complex web of 

dependencies that are difficult for platforms to fully audit manually. 

Platforms must develop robust capabilities to analyze apps' SDK 

dependencies carefully and warn developers about risky 

integrations. This task, given the sheer volume of apps and SDKs, 

can only be scaled effectively using LLM-assisted manifest and 

binary analysis tools that can identify embedded libraries, their 

declared permissions, and their observed network behaviors [71], 

[109]. 

 

Fig. 7. Risk pathways introduced by unsafe third-party SDK integrations. 
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E. Abuse Scaling with Polymorphic Variants 

A particularly challenging threat vector enabled by LLMs is the 

ability for threat actors to generate polymorphic app variants [17], 

[74]. This involves subtly modifying code, permissions, metadata, 

or content across multiple app submissions to evade static detection 

signatures and traditional rule-based heuristics [10]. These variants 

may appear slightly different in their user interface (UI) or user 

experience (UX) but preserve their malicious core functionality, 

making them highly effective at bypassing initial automated checks 

and exhausting human reviewer capacity. 

For instance, an attacker could use an LLM to: 

Automate code obfuscation techniques, producing millions of 

unique malware samples from a single malicious payload [76]. 

Generate slightly different app descriptions and screenshots for 

functionally identical fraudulent apps, preventing their detection 

based on visual or textual similarity alone [98]. 

Randomize package names, class names, or API call sequences 

to avoid signature-based detection, while maintaining the malicious 

logic [75]. 

A simplified diagram of the polymorphic abuse pipeline is 

shown in Fig. 8, illustrating how LLMs serve as powerful tools for 

generating diverse, yet functionally similar, malicious artifacts. 

Platforms relying solely on shallow heuristics, hash matching, or 

fixed rules are ill-equipped to counter such scalable evasion 

strategies [73]. The solution lies in leveraging LLMs themselves to 

assist defenders by reasoning about deeper code semantics, 

behavioral patterns across app submissions, and the underlying 

intent of applications, even when surface features change [34], 

[110].  
 

Fig. 8. How LLMs enable polymorphic app variant generation for 

scalable abuse. 

 

F. Regulatory Non-Compliance at Scale 

The global digital regulatory landscape is becoming 

increasingly fragmented and complex, with new privacy, safety, 

and content governance laws emerging frequently across different 

jurisdictions [8], [10]. LLMs, by default, typically lack inherent 

jurisdictional awareness unless explicitly fine-tuned with massive, 

context-specific legal and regulatory datasets [26], [156]. As a 

result, apps generated with LLM assistance, or those operating in 

Gen-AI marketplaces, may inadvertently or deliberately violate 

major regulations such as: 

GDPR (EU): Apps may lack lawful bases for data processing, 

fail to implement proper consent mechanisms, or not honor user 

rights like the right to be forgotten or data portability [6], [36]. 

CCPA (California): Failure to provide clear opt-out 

mechanisms for the sale of personal information or incomplete "Do 

Not Sell My Info" links [7]. 

COPPA (U.S.): Non-compliance with regulations concerning 

the collection of personal information from children under 13, 

including failure to obtain verifiable parental consent [111]. 

HIPAA (U.S.): Improper handling or disclosure of protected 

health information (PHI) in health-related applications, leading to 

severe penalties [112]. 

Digital Services Act (EU): Non-transparent app ranking, unfair 

self-preferencing, inadequate reporting obligations for harmful 

content, or insufficient due diligence for products offered on the 

platform [8], [27]. 

EU AI Act: Emerging regulations focusing on the responsible 

development and deployment of AI systems, potentially imposing 

strict requirements on transparency, risk assessment, and human 

oversight for AI-powered apps and services [48]. 

These compliance challenges extend far beyond mobile apps. 

Any platform that allows LLM-assisted user contributions or 

storefronts—including generative AI marketplaces, social media 

platforms, or digital commerce sites—will face similar issues where 

disclosure, consent, and content moderation expectations are often 

jurisdiction-dependent [56], [57]. Manually verifying compliance 

across a diverse and rapidly changing regulatory environment is 

unsustainable [10]. 

As platforms increasingly adopt LLMs defensively to enhance 

integrity, attackers are also iterating their methods, creating an 

evolving “LLM misuse detection arms race” [32], [74], [113]. 

Malicious actors are fine-tuning their own generative models to 

produce evasive variants that can mimic compliant behavior or 

actively probe LLM-based detection thresholds. For instance, 

attackers may deploy adversarial prompt engineering to generate 

code or policies that appear benign to AI reviewers while 

embedding obfuscated logic or subtle policy violations [110], [114]. 

As shown in recent studies on prompt injection and evasion patterns 

[32], [66], [115], the cat-and-mouse dynamic now extends directly 

to LLM architectures themselves. This arms race necessitates not 

only technical vigilance but also continuous retraining of detection 

models with rapid feedback loops sourced from real-world 

submissions and flagged misuse incidents [78], [116]. Platforms 

that treat abuse detection as a static deployment rather than an 

adaptive, intelligence-driven system risk falling behind in this 

dynamic landscape. Novel approaches, such as watermarking AI-

generated content to trace its origin or applying traffic pattern 

analysis (originally developed in Software-Defined Networking 

(SDN) contexts [42]) to detect coordinated abusive campaigns, may 

also inform new strategies for tracing and mitigating abusive 

behavior across app ecosystems [117], [118]. 

Table 9 provides a comprehensive mapping of common 

regulatory violations by LLM-assisted apps, highlighting the broad 

spectrum of compliance challenges. Without systematic, AI-

augmented compliance validation, platforms risk hosting non-

compliant applications and content, leading to severe regulatory 
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penalties, significant financial losses, and a critical erosion of user 

trust [9], [49]. 

Table 9. Common regulatory compliance gaps observed in LLM-

generated mobile apps. 

Regulation Affected Typical Violations in LLM-Generated Apps 

GDPR (EU) Missing lawful basis for data processing, 

inadequate consent, failure to honor deletion 

requests. 

CCPA (California) No clear opt-out option for data sale, incomplete 

'Do Not Sell My Info' links. 

COPPA (Children's 

Privacy, US) 

Failure to obtain verifiable parental consent 

before collecting data from users under 13. 

HIPAA (Health 

Data, US) 

Improper handling or disclosure of protected 

health information (PHI) in health apps. 

Digital Services Act 

(EU) 

Non-transparent app ranking, unfair self-

preferencing, inadequate reporting obligations. 

 

G. Social Engineering and Trust Exploits 

LLMs possess a remarkable ability to generate highly 

persuasive, contextually relevant, and emotionally resonant text and 

user flows, which malicious actors can weaponize for sophisticated 

social engineering attacks [25], [79]. These AI-driven exploits aim 

to manipulate users into divulging sensitive information, granting 

excessive permissions, making unauthorized purchases, or 

performing other harmful actions. Common abuse patterns 

leveraging LLMs for social engineering include: 

Deceptive Onboarding Flows: Apps presenting seemingly 

legitimate onboarding processes that artfully coax users into 

granting excessive, unnecessary, or intrusive permissions (e.g., 

continuous background location tracking, access to call logs) 

through manipulative language or veiled benefits [104], [119]. 

Phishing Overlays and Impersonation: Malicious apps 

generating convincing in-app overlays or prompts that mimic 

legitimate login portals (e.g., banking apps, social media accounts) 

to steal credentials, or impersonating official platform 

communications to trick users into security-compromising actions 

[120], [121]. 

Manipulative In-App Purchase Prompts: Apps using 

persuasive language or emotional appeals to drive impulsive or 

unauthorized in-app purchases, often targeting vulnerable user 

groups or exploiting cognitive biases [122]. 

Fake Customer Support and Chatbots: LLMs can power 

highly realistic fake customer support chatbots or messaging 

interfaces within malicious apps designed to extract personal 

information or guide users to malicious websites [123]. 

Credential Stuffing and Account Takeover (ATO) Attacks: 

LLMs can be used to generate variations of stolen credentials or to 

automate attempts to bypass login protections, facilitating large-

scale account takeovers [124]. 

A conceptual visualization of LLM-enabled social engineering 

attack patterns is shown in Fig. 9, highlighting the various 

touchpoints where user trust can be exploited. Detecting these 

nuanced psychological manipulations requires moving beyond 

simple keyword matching or syntactic analysis. LLM-powered 

abuse detection pipelines show significant promise in modeling and 

detecting these complex behavioral and semantic exploit vectors by 

analyzing user interaction patterns, linguistic cues, and emotional 

sentiment within the generated content [25], [79], [125]. 

Furthermore, advancements in behavioral biometrics and anomaly 

detection are becoming critical countermeasures [126]. 

 

 

Fig. 9. LLM-generated social engineering patterns in app user interfaces. 

 

IV. LLMS FOR REVIEWER AUTOMATION AND PLATFORM 

INTEGRITY 

To ensure this strategic roadmap offers not only breadth but also 

practical depth, each proposed capability is accompanied by 

implementation strategies, evaluation metrics, and real-world 

deployment references. Traditional mobile app review processes 

were originally designed for an era characterized by moderate app 

submission volumes and predominantly manually detectable abuse 

patterns [73], [127]. However, as app submissions have exploded in 

quantity and complexity—a phenomenon significantly driven by 

LLM-assisted development [54], [53]—the need for scalable, 

intelligent, and adaptive review workflows has become critically 

urgent [73]. Manual reviews alone, even with extensive human 

resources, are no longer sufficient for effectively ensuring platform 

safety, comprehensive regulatory compliance, and sustained user 

trust in the face of rapidly evolving threats [27], [128]. 

In this section, we comprehensively explore how LLMs can 

power the next generation of app review automation and overall 

platform integrity systems. This involves strategically augmenting 

human reviewers, drastically improving detection precision, and 

enabling more proactive and scalable enforcement across diverse 

digital ecosystems [28], [34]. It is crucial to note that these review 

challenges are not limited to mobile applications. Generative 

platforms hosting user-facing AI tools, such as Hugging Face 

Spaces or OpenAI Plugins, and digital commerce sites like Amazon 

and Etsy, increasingly rely on scalable review frameworks to ensure 

that uploaded models, user-generated content, prompts, and outputs 

consistently adhere to platform policies, safety standards, and legal 

requirements [56], [57], [129]. 

 

A. Static Code Analysis Using LLMs 

Conventional static code analyzers primarily operate based on 

hand-crafted rules, predefined patterns, and signature matching to 
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identify known vulnerabilities or malicious code [130], [131]. 

While effective for well-understood threats, their limitations 

become apparent when confronted with novel, polymorphic, or 

highly obfuscated malware [75], [76]. However, LLMs offer a 

transformative capability: they can reason about code at a higher 

semantic level, understanding not just the syntax but also the 

underlying intent and potential behavioral implications of the code 

[12], [19], [21]. This enables several advanced applications for 

enhanced static code analysis: 

Detection of Polymorphic and Obfuscated Malware: LLMs 

can analyze code patterns for structural and semantic anomalies that 

indicate malicious intent, even when surface features or traditional 

signatures change [75], [76]. This involves identifying unusual API 

calls, obfuscation techniques, or control flow manipulations 

indicative of malicious payloads [133]. 

Identification of Latent Threats and Zero-Day 

Vulnerabilities: By understanding the logical flow and purpose of 

code, LLMs can identify subtle programming errors or design flaws 

that could be exploited, potentially uncovering previously unknown 

vulnerabilities (zero-days) that evade signature-based tools [19], 

[83], [132]. 

Detecting Privacy-Violating Behaviors: LLMs can scan code 

for unauthorized access to sensitive user data, insecure 

communication channels, or covert data exfiltration routines, 

ensuring adherence to privacy policies and regulations [104], [94]. 

They can infer data flows and identify whether sensitive 

information is being handled securely [134]. 

Spotting Misleading or Manipulative UI/UX Flows: Beyond 

just code, LLMs can analyze code associated with user interface 

elements to detect patterns that suggest deceptive or manipulative 

flows, such as fake consent screens, hidden buttons, or misleading 

prompts designed for social engineering [119], [125]. 

Recent research, such as work by Chen et al. [19], has 

empirically demonstrated that LLMs fine-tuned on security-

relevant codebases (e.g., repositories containing known 

vulnerabilities, malware samples) can significantly outperform 

traditional static analysis tools in terms of vulnerability detection 

accuracy, achieving higher precision and recall rates [83], [136]. 

The evolution of static code analysis pipelines through LLM 

integration is conceptually illustrated in Fig. 10, highlighting key 

tasks such as identifying obfuscated malicious logic, detecting 

privacy violations, and spotting misleading UI patterns. This 

semantic understanding capability is a game-changer for proactive 

security. 

 

Fig. 10. Evolution of static code analysis through LLM integration for 

detecting vulnerabilities. 

 

B. Multimodal Cross-Validation of Storefront Claims 

The integrity of a platform is not solely determined by the 

security of the underlying code but also by the accuracy and honesty 

of the information presented to users. LLMs are uniquely positioned 

to enable platforms to cross-validate an application’s declared 

functionalities and characteristics (derived from its description, 

screenshots, promotional videos, and privacy labels) against its 

underlying code, observed runtime behaviors, and network 

activities [9], [15], [97], [135]. This multimodal reasoning 

capability is crucial for detecting and preventing storefront 

misrepresentation and deceptive practices [21], [98]. This 

powerful capability can detect cases where: 

Inconsistent Data Practices: An app's storefront metadata 

explicitly claims "no data collection" or "does not access personal 

information," but its code is found to access contacts, precise 

location data, or microphone, or transmit such data over the network 

[104], [105]. 

Misleading Functionality Claims: An app prominently 

markets itself as "offline-only functionality" or "no internet 

required," yet dynamic analysis reveals it demands constant 

network access for core features, or contains aggressive advertising 

SDKs not disclosed [97], [107]. 

False Compliance Assertions: Storefronts or privacy labels 

claim "HIPAA-compliant" (for health apps) or "GDPR-ready" 

without the underlying code or behavior supporting such assertions, 

potentially exposing users and platforms to legal risks [99], [36]. 

Synthetic Visuals and Text: The app uses AI-generated 

screenshots or promotional videos that depict functionalities or user 

interfaces not present in the actual application, or employs AI-

written fake reviews to artificially boost ratings [77], [23]. 

Common discrepancies between app storefront claims and 

detected behaviors are summarized in Table 10. This rigorous cross-

validation process significantly reduces misrepresentation risks, 

enhances user protection, and fundamentally maintains ecosystem 

trust and transparency [21], [57]. The ability of LLMs to process 

and correlate information across different modalities (text, code, 

visual data, network logs) is central to this advanced detection 

capability [97], [137]. 

Table 10. Common Storefront Claims vs Detected App Behavior 

Storefront Claim Detected App Behavior 

No Ads Displayed Integrates multiple aggressive ad SDKs 

Offline-Only 

Functionality 

Requires persistent network access 

No User Data Collected Accesses contacts, location, camera 

HIPAA/GDPR 

Compliance 

Privacy policy missing or contradictory 

Minimal Permissions 

Required 

Requests background location, microphone 

access 

 

C. Policy and Document Review Automation 

The sheer volume and complexity of legal and compliance 

documentation presents a significant bottleneck for global 

regulatory adherence. This includes privacy policies, terms of 

service, and user consent flows for mobile applications, alongside 



13 

 

crucial documents like seller agreements on e-commerce platforms 

(e.g., Amazon) and community guidelines for social media 

networks (e.g., those governing user moderation and banning 

procedures). These documents are vital for conforming to 

frameworks such as GDPR [6], CCPA [7], COPPA [111], and 

emerging AI-specific regulations [138]. Large Language Models 

(LLMs) can profoundly enhance this process by semantically 

analyzing these documents to: 

Identify Missing or Ambiguous Disclosures: LLMs can 

pinpoint omissions of legally required disclosures (e.g., data 

retention periods, cross-border data transfer details, specific third-

party data recipients) or highlight language that is vague, 

contradictory, or intentionally misleading [14], [103], [106]. 

Highlight Inconsistencies between Documentation and 

Observed App Behaviors: By comparing the text of a privacy 

policy against the actual code and dynamic network behaviors of an 

app, LLMs can flag discrepancies. For instance, if a policy states no 

location data is collected, but the app requests and transmits GPS 

coordinates, the LLM can identify this critical mismatch [36], [104]. 

Suggest Localized Policy Edits for Regional Regulatory 

Alignment: LLMs can be fine-tuned with knowledge of various 

international privacy laws and suggest region-specific amendments 

or additions to policies to ensure compliance with diverse 

jurisdictional requirements (e.g., distinct consent requirements in 

Germany versus France under GDPR) [18], [156]. 

Automate Compliance Checklists: LLMs can be trained to 

automatically fill out compliance checklists or generate compliance 

reports based on the content of policies and observed app behavior, 

significantly reducing manual effort and improving auditability 

[103], [139]. 

The LLM-based automated policy document review pipeline is 

illustrated in Fig. 11, showing how LLMs analyze privacy policies, 

terms of service, and user consent flows to identify missing 

disclosures, highlight inconsistencies, and suggest localized edits 

for compliance. Research has shown that LLMs fine-tuned with 

extensive privacy law datasets can achieve high accuracy in 

flagging non-compliant clauses or data practices, enabling 

platforms to scale their legal and compliance efforts significantly 

[15], [156]. 

 

Fig. 11. LLM-based automated policy document review pipeline for 

regulatory compliance 

 

D. Website and Metadata Correlation 

Apps and items listed on digital marketplaces often link to 

external websites, promotional landing pages, social media profiles, 

or support forums. These linked resources represent an additional 

attack surface and a potential source of misrepresentation. LLMs 

can be leveraged to parse and semantically analyze these external 

web resources, comparing their content against the app’s declared 

metadata, in-app behavior, and policy documentation [22]. This 

capability is vital for: 

Detecting Bait-and-Switch Tactics: Identifying instances 

where the external website promotes features, pricing models, or 

functionalities that are not actually present in the submitted app, or 

vice-versa [22]. 

Flagging Fraudulent Marketing: Catching promotional 

content on external sites that misrepresents the app's capabilities, 

user base, or security certifications, often used in phishing or scam 

campaigns [98], [80]. 

Identifying Undisclosed Data Collection: Uncovering 

tracking scripts, aggressive advertising, or data collection practices 

on linked websites that contradict the app's stated privacy policy 

[105]. 

Recognizing Brand Impersonation: Detecting external sites 

that fraudulently imitate legitimate brands or services to trick users 

into downloading malicious apps or providing sensitive information 

[120]. 

Verifying Compliance Claims: Cross-referencing privacy 

seals, security certifications, or regulatory compliance claims made 

on external websites with the actual app and its documented policies 

[99]. 

The automated pipeline for website and metadata correlation 

detection is illustrated in Fig. 12, showing how LLMs parse external 

websites, compare them to app metadata, and trigger review 

escalations when misalignments occur. Such advanced detection 

protects users from deceptive marketing, fraudulent schemes, and 

potential security risks stemming from external digital assets [22], 

[57]. 

 

Fig. 12. Pipeline for detecting mismatches between app metadata and 

linked website content using LLM-based cross-validation. 
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E. Automated Rejection Reasoning and Developer Feedback 

A major point of frustration for developers submitting to app 

stores, sellers listing products on e-commerce sites, or users facing 

content moderation decisions on social media is receiving vague, 

generic, or non-actionable rejection reasons [23], [149], [141]. This 

lack of clarity prolongs iteration cycles, increases dissatisfaction, 

and escalates the support burden for platform operators [140]. 

LLMs can significantly improve this critical feedback loop by auto-

generating clear, specific, and highly helpful feedback through 

semantic understanding of policy violations and analysis of the 

submitted content (e.g., code, product listings, or user-generated 

content): 

Summarizing Detected Policy Violations: LLMs can 

succinctly explain why a submission (whether an app, product 

listing, or piece of user content) was rejected, referencing specific 

policy clauses and outlining the nature of the violation in plain 

language [23]. 

Highlighting Relevant App Components: Instead of a generic 

rejection, the feedback can pinpoint the exact code snippets, 

storefront elements (e.g., specific screenshots, lines in a 

description), or policy clauses responsible for the violation. This 

contextualization helps submitters quickly identify and address the 

issue [142]. 

Suggesting Concrete Corrective Actions: The LLM can 

propose specific, actionable steps developers can take to bring their 

app into compliance. For example: "Your app requests background 

location access without explicit user consent and lacks 

corresponding disclosures in your privacy policy. Please update 

your app to request runtime consent and revise your privacy policy 

accordingly, specifically adding a section on persistent background 

location data usage." Similarly, for an e-commerce seller, it might 

suggest: "Your product image violates guideline 3.4.c due to 

excessive text overlay. Please replace it with an image showing only 

the product." Or for a social media user: "Your post containing 

personal contact information violates our privacy policy (Section 

2.1). Please edit the post to remove sensitive details." This moves 

beyond just flagging problems to providing solutions [23], [143]. 

Building on these capabilities, Fig. 13 illustrates an end-to-end 

pipeline for seamlessly integrating LLMs into platform review 

workflows. From ingesting app metadata, user reviews, and 

submitted code, LLMs can act as intelligent intermediaries. They 

assist in static/dynamic analysis, storefront cross-validation, and 

triaging abuse reports. Crucially, feedback loops update the models 

using compliance outcomes, developer appeals, and human 

reviewer corrections, enabling adaptive and explainable 

enforcement across submission, review, and post-deployment 

monitoring. This integrated architecture ensures that the entire 

process becomes more efficient, accurate, and developer-friendly 

[51], [144]. To illustrate the process of automated rejection 

reasoning and feedback in e-commerce, Fig. 14 depicts a flowchart 

outlining the integration of LLM-based analysis into the product 

review lifecycle. 

 

Fig. 13. End-to-end integration of LLMs in app review pipelines. The 

system begins by ingesting metadata, user reviews, and submitted code. LLMs 

assist in static/dynamic analysis, storefront cross-validation, and triaging 

abuse reports. Feedback loops update models using compliance outcomes, 

developer appeals, and reviewer corrections, enabling adaptive and 

explainable enforcement across submission, review, and post-deployment 

monitoring. 

 

Fig. 14. Automated Rejection Reasoning and Feedback System for E-

Commerce Platforms. This infographic illustrates the end-to-end process of 

how a Large Language Model (LLM) analyzes seller product listings, detects 

policy violations, highlights relevant components, and provides actionable 

feedback to help sellers revise and resubmit their listings effectively. 

 

F. Implementation Considerations and Evaluation Metrics 

While LLMs provide powerful abstractions for complex 

platform integrity tasks, operationalizing them at scale requires 

careful consideration of several implementation aspects. A 

thoughtful approach ensures that the benefits of AI are realized 

without introducing new challenges or diminishing trust. 

Model Selection and Fine-Tuning: Platforms typically begin 

with large, general-purpose foundation models (e.g., GPT [12], 

LLaMA [14], PaLM [13]) and then perform extensive fine-tuning 
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on platform-specific, domain-relevant data. This includes flagged 

apps, product listings, user-generated content, anonymized review 

summaries, platform policy text, legal documents, and detailed 

abuse case studies. Fine-tuning significantly enhances the model's 

ability to understand nuanced policy violations and security patterns 

specific to the platform's ecosystem [17], [150]. Techniques like 

Low-Rank Adaptation (LoRA) [17] and Quantized LoRA 

(QLoRA) allow for efficient fine-tuning of large models with 

smaller datasets and computational resources [151].  

However, it's crucial to acknowledge that training and 

deploying such large-scale models demand significant 

computational power, energy, and data storage, posing a 

considerable barrier for smaller platforms and raising 

environmental sustainability concerns. 

Inference Efficiency and Latency: To meet the strict latency 

constraints of real-time review pipelines, particularly for high-

volume submissions app submissions, new product listings, or user 

posts, lightweight versions of LLMs are often employed. 

Techniques like quantization (reducing model precision) and 

distillation (training a smaller model to mimic a larger one) are 

critical for optimizing inference speed and reducing computational 

cost [152], [153]. 

Evaluation Metrics: Rigorous evaluation is paramount to 

ensure the effectiveness and fairness of LLM-augmented systems. 

Key metrics include:  

Precision and Recall: For abuse and fraud detection, high 

precision minimizes false positives (incorrectly flagged legitimate 

content), while high recall ensures that malicious content is not 

missed [35], [154]. 

False Positive Rate (FPR) in Reviewer Triage: Minimizing 

the rate at which legitimate apps, product listings, or user posts are 

flagged for human review, thus optimizing human reviewer 

efficiency [35]. 

F1 Score in Static Analysis: A balanced metric (harmonic 

mean of precision and recall) for evaluating the effectiveness of 

LLM-powered static analysis and automated submission evaluation 

tools for various content types compared to traditional methods 

[19], [83]. 

Developer/Submitter/User Satisfaction Metrics: Surveys and 

feedback channels to gauge developer, seller, or user satisfaction 

with the clarity, speed, and helpfulness of automated feedback and 

rejection reasons [23], [149]. 

Compliance Coverage across CCPA/GDPR/DSA 

Obligations: Quantifying the percentage of legal and policy 

requirements consistently met by apps, products, or platform 

operations post-review, demonstrating effective regulatory 

enforcement [156]. 

Deployment Stack and Architecture: The choice of 

deployment strategy significantly impacts privacy, scalability, and 

update frequency.  

On-device LLMs (e.g., as implemented by Apple for certain 

privacy-preserving tasks [45], [36]): These models run directly on 

user devices, offering enhanced data privacy by keeping sensitive 

user data local. However, they may have limitations in model size, 

complexity, and frequent update capabilities [157]. 

Server-side Systems (e.g., Google Play Protect [44]): These 

leverage powerful cloud infrastructure for large-scale model 

inference, offering greater model complexity, real-time updates, 

and centralized threat intelligence. However, they require robust 

data anonymization and privacy safeguards for user data [35], 

[158]. A hybrid approach combining the benefits of both is often 

optimal. 

LLM models fine-tuned on labeled vulnerability datasets have 

shown impressive performance gains, with studies reporting 

improvements of 22% in precision and 17% in recall compared to 

traditional static analyzers [19]. While conventional review 

pipelines rely heavily on manual heuristics, rule-based static 

analyzers, and keyword-matching approaches, LLM-augmented 

systems introduce a new paradigm grounded in deep semantic 

reasoning, adaptive triage, and scalable cross-modal validation.  

Fig. 15. presents a comprehensive set of metrics used to 

evaluate the performance, fairness, and impact of LLM-augmented 

app, product, and content review pipelines. These metrics guide 

ongoing improvements in detection accuracy, operational 

efficiency, regulatory compliance, and developer, seller, and user 

experience. 

 

 

Fig. 15. Key metrics for evaluating the effectiveness of AI-augmented app, 

product, and content review pipelines. These include throughput, detection 

rates, false positive/negative rates, F1 score, time to decision, developer 

satisfaction, regulatory compliance, and appeal success rate. Together, these 

metrics ensure data-driven optimization and continuous improvement of 

platform safety, accuracy, and fairness. 

To highlight this evolution, Table 11 summarizes the key 

differences between conventional app, e-commerce, and social 

media review processes and those significantly enhanced by LLM 

integration. These enhancements not only boost reviewer efficiency 

and detection accuracy but also improve the developer, seller, and 
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user experience through more contextual feedback and a reduction 

in frustrating false positives [23], [149]. 

 

Table 11. Comparison of Traditional vs. LLM-Augmented App Review 

Pipelines 

Aspect 
Traditional Review 

Pipeline 

LLM-Augmented 

Review Pipeline 

Code/Content Analysis 

Primarily relies on 

rule-based static 

analyzers, signature 

matching, and 

simplistic pattern 

recognition for 

code. Manual 

review or keyword 

matching for 

product 

descriptions, 

images, or user-

generated content. 

Limited in detecting 

polymorphic or 

zero-day threats 

[130]. 

Employs semantic 

reasoning using LLMs to 

understand code intent, 

detect complex logical 

flaws, and support 

polymorphic malware 

detection, even when 

surface features change 

[34], [76]. Extends this 

semantic analysis to 

product descriptions, 

images, and user-

generated content to 

identify violations beyond 

keywords. 

Metadata/Submission 

Validation 

Manual inspection 

of app descriptions, 

screenshots, and 

privacy labels. For 

e-commerce, 

manual review of 

product titles, 

images, and 

specifications. For 

social media, 

manual assessment 

of user profiles and 

post context. Prone 

to human error and 

easily circumvented 

by sophisticated 

deception [21]. 

Cross-validation of app 

behavior and storefront 

claims using LLMs across 

multiple modalities (text, 

visuals, code, network 

activity). Similarly, 

verifies consistency 

between e-commerce 

product data and images, 

or social media user 

profiles and their content, 

to detect inconsistencies 

and misrepresentations 

[97], [21]. 

User/Community 

Monitoring 

Manual triage of 

app reviews and 

user feedback; 

keyword-based 

filtering; limited 

capacity to process 

large volumes of 

unstructured data. 

Reactive rather than 

proactive in 

identifying 

emerging threats 

[159]. 

LLM-based 

summarization and abuse 

signal detection from vast 

app review, e-commerce 

feedback, and social 

media user datasets. 

Proactively identifies 

emerging issues, 

performance regressions, 

and real-world abuse 

cases at scale [45], [159]. 

Policy Compliance Checks 

Primarily manual 

audits by legal and 

policy teams; rule-

based checks for 

known compliance 

terms. Inefficient 

and non-scalable for 

complex, evolving 

global regulations 

[10]. 

LLM parsing of privacy 

policies and regulatory 

obligations, cross-

referencing with app 

behavior, product 

specifications, or user 

content to automate 

compliance enforcement 

for GDPR [6], CCPA [7], 

DSA [8], and other laws 

[36], [156]. 

Throughput & Scalability 

Limited by reviewer 

capacity; manual 

processes create 

bottlenecks; 

difficult to scale 

linearly with 

increasing 

submission volumes 

[73]. 

Scales dynamically with 

model inference 

capabilities and adaptive 

triage systems; 

significantly boosts 

reviewer capacity by 

offloading routine tasks 

[35], [51]. 

False Positives & Context 

Gaps 

High false positive 

rates due to rigid 

rules that often miss 

nuance or context; 

Reduced via contextual 

understanding and deeper 

semantic reasoning by 

LLMs. Provides more 

generic flags 

without specific 

details make 

remediation difficult 

for developers [23]. 

precise flagging and fewer 

irrelevant alerts, 

improving accuracy and 

reducing friction for 

developers, sellers, and 

users [149]. 

Feedback to 

Developers/Submitters/Users 

Generic, templated 

rejection messages 

that provide little 

context or 

actionable guidance, 

leading to 

frustration and 

repeated 

submissions [149]. 

Contextual, LLM-

generated feedback 

tailored to app behavior, 

product listing details, or 

user content and specific 

policy violations. Offers 

clear rationales and 

suggests concrete 

corrective actions, 

improving developer, 

seller, and user experience 

and reducing appeal 

cycles [23], [143]. 

Adaptability to New Threats 

Slow to adapt to 

novel abuse tactics 

and polymorphic 

variants; requires 

manual updates to 

rules and signatures 

[74]. 

Adaptive model tuning 

and continuous learning 

from new data and abuse 

patterns; capable of 

detecting novel or 

evolving threats through 

generalized understanding 

of intent [110], [116]. 

 

Operationalizing these LLM-powered integrity systems 

requires significant investment in both infrastructure and talent. 

This includes compute resources for model inference, scalable 

storage for metadata and logs, and robust orchestration for real-time 

review workflows. Just as importantly, it demands cross-functional 

talent: from ML engineers and policy experts to UX designers and 

Trust & Safety specialists. Product teams must balance ambition 

with practical resource constraints when scaling these systems 

across global digital ecosystems. 

 

V. CROSS-FUNCTIONAL COLLABORATION FOR SAFE APP 

ECOSYSTEMS AND PLATFORM INTEGRITY 

Safeguarding mobile app ecosystems and broader digital 

platforms at scale demands more than just isolated technical 

innovation; it requires a tightly orchestrated and holistic approach 

involving cross-functional collaboration across multiple 

organizational functions [39], [41], [160], [161]. The challenges 

posed by LLM-amplified abuse, intricate privacy risks, and ever-

evolving regulatory expectations are simply too vast and complex 

for any single department to address in isolation [27], [128], [162]. 

A siloed approach can lead to reactive governance, missed threats, 

and inefficient resource allocation, ultimately undermining 

platform integrity and user trust [163], [164], [165]. 

This section outlines how platforms can design integrated, 

cross-functional architectures to effectively incorporate LLM-

powered tools, optimize review workflows, ensure dynamic 

regulatory alignment, and continuously adapt to emerging threats in 

a proactive rather than reactive manner. The emphasis is on 

breaking down organizational barriers to build a cohesive and 

responsive trust and safety framework, moving from a fragmented 

collection of teams to a unified front against digital harm [41], 

[166]. 

Achieving this integrated posture necessitates formalized 

collaborative mechanisms, such as shared objectives and key results 

(OKRs) across teams, dedicated weekly syncs with cross-functional 
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leadership, and a unified platform for tracking and resolving 

integrity issues. 

 

A. Role of Product Management, Policy, Legal, Operations, 

and Engineering 

A robust and effective platform safety organization is 

characterized by its ability to align diverse teams around common 

goals, shared metrics, and interconnected workflows. Each 

functional area plays a distinct yet interdependent role in 

operationalizing LLM-powered integrity systems, ensuring 

comprehensive coverage and rapid response capabilities: 

Product Management: This team serves as the strategic 

orchestrator, defining the overall review flows, risk frameworks, 

and developer, seller, and user experiences [40], [167]. They are 

responsible for identifying key problem areas, prioritizing the 

development of LLM-powered safety features, and ensuring these 

features align with the platform's strategic objectives, user needs, 

and business goals [168], [169]. Product managers translate abstract 

policy goals into tangible product requirements, bridging the gap 

between technical capabilities and operational impact [167]. They 

often lead the roadmap for implementing new safety features, such 

as AI-driven content scanning or automated policy violation 

detection [170]. They also champion the development of shared 

tools and dashboards that provide a holistic view of integrity 

posture, enabling data-driven decision-making across all 

stakeholder groups. 

Engineering: The engineering team is the technical backbone, 

responsible for building, deploying, and maintaining the LLM-

based review pipelines, policy analyzers, static and dynamic code 

analyzers (primarily for apps), and abuse detection systems for all 

forms of digital content (e.g., product listings, user posts) [34], [52], 

[171], [172]. This includes selecting appropriate LLM architectures 

(e.g., transformer-based models, specialized variants), fine-tuning 

models on domain-specific data, optimizing for inference efficiency 

(e.g., through quantization or distillation), and seamlessly 

integrating these AI components into existing platform 

infrastructure [151], [152], [173]. Their mandate also extends to 

ensuring secure-by-design principles for AI components, robust 

API security for LLM integrations, and leveraging modern 

DevSecOps practices for continuous security assurance throughout 

the development and deployment lifecycle. 

They also manage the continuous integration/continuous 

deployment (CI/CD) pipelines for AI models, ensuring they are 

always up-to-date with the latest threat intelligence [116]. This 

includes establishing robust API contracts for AI service 

integrations and developing modular architectures that allow for 

rapid iteration and deployment of security enhancements based on 

cross-functional feedback. 

Trust & Safety Operations (T&S): This team is on the front 

lines, triaging escalations, managing takedowns, and fine-

tuning human-AI reviewer interactions [39], [174], [175], [176]. 

They provide critical human judgment for complex edge cases, 

serve as a vital feedback loop for model improvement by labeling 

data, correcting AI errors, and identifying novel abuse vectors that 

AI models might initially miss [35], [58], [177]. Their practical 

insights are invaluable for identifying real-world attack patterns and 

adversarial strategies, directly informing the iterative refinement of 

AI models [110]. 

This augmentation is realized through intelligent triage systems 

that escalate borderline cases, novel abuse patterns, or high-severity 

flags to human reviewers, leveraging predefined confidence 

thresholds and risk scores. Human reviewers provide critical 

feedback through detailed labeling tools and structured error 

reporting forms, directly influencing subsequent model retraining 

and refinement cycles. Furthermore, clear protocols are established 

for human override of AI decisions, ensuring a robust safety net for 

edge cases and enabling rapid adaptation to unforeseen threats. 

This augmentation ensures that AI systems handle routine, 

high-volume tasks, freeing human reviewers to focus on ambiguous 

edge cases, novel abuse patterns requiring nuanced judgment, and 

complex ethical dilemmas where human discernment is 

indispensable. Their unique ability to interpret subtle intent and 

adapt to new adversarial tactics remains paramount. 

Furthermore, the efficacy of AI-augmented workflows hinges 

on meticulously designed human-AI interaction protocols. For 

instance, in app review, this demands clear confidence thresholds 

that automatically escalate submissions with low AI confidence 

scores or novel threat patterns to human experts, alongside intuitive 

dashboards that present comprehensive, LLM-summarized contexts 

for rapid human discernment. In content moderation, robust 

feedback mechanisms must enable human reviewers to efficiently 

correct AI misclassifications, thereby retraining and refining 

models in real-time. For fraud detection, systems should present 

explainable risk scores and highlight key indicators to human 

analysts, facilitating quicker, more informed decisions while 

leveraging AI for high-volume pattern recognition. This 

continuous, symbiotic feedback loop is crucial for maximizing both 

efficiency and nuanced accuracy [178]. 

Legal and Policy Teams: These teams are crucial for ensuring 

that platform rules, automated enforcement mechanisms, and AI 

model outputs align with global laws and regulations (e.g., GDPR 

[6], CCPA [7], DSA [8], EU AI Act [48]) [10], [156], [179]. They 

translate complex regulatory requirements into enforceable product 

features and clear platform policies, advise on legal risks associated 

with AI decisions (e.g., bias, due process), and manage relationships 

with regulatory bodies [180], [181]. Their expertise is essential in 

navigating the evolving landscape of AI governance and ensuring 

compliance across diverse international jurisdictions [49], [182]. 

User Experience (UX) and Developer Relations: This 

function is responsible for creating transparent, actionable, and 

fair feedback loops to developers, sellers, and users alike. They 

design intuitive interfaces for rejection notifications, provide clear 

explanations of policy violations (often leveraging LLM-generated 

summaries [23]), and offer guidance on how to fix issues quickly 

and fairly [149], [140]. Effective communication and support foster 

a positive developer, seller, and user experience, reducing 

frustration, minimizing appeal cycles, and promoting quicker 

compliance with platform standards [142], [183]. For users, they 

ensure clarity on moderation decisions and avenues for recourse. 

Phased Rollout Strategy: Within this framework, Product 

Management plays a pivotal role in orchestrating the phased 

introduction of LLM-powered capabilities. Rather than deploying 

all features at once, a strategic rollout would begin with Minimum 
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Viable Product (MVP) stages targeting low-risk, high-impact 

areas—such as metadata validation or automated review 

summarization. Subsequent phases would expand to more complex 

functions like federated review, multi-modal cross-validation, and 

dynamic compliance parsing. This staged approach enables 

iterative testing, minimizes disruption, and facilitates continuous 

feedback loops to refine both model accuracy and developer /user 

experience. 

The primary responsibilities of each cross-functional team are 

summarized in Table 12. The synergy between these teams is 

paramount; for example, engineering builds tools that incorporate 

legal policies, operations provides feedback that refines the tools 

and identifies new threats, and product management ensures that all 

efforts serve the overarching goal of platform integrity and user 

trust. This integrated approach fosters a culture of shared 

responsibility for platform safety [166], [184]. 

Table 12. Team responsibilities for cross-functional collaboration in 

platform safety 

 

 

Product-Level Risk Mitigation: Beyond technical risks, 

product-level challenges—such as user backlash from false 

positives, developer churn due to opaque feedback, and feature 

adoption resistance—must be proactively addressed. Product teams 

can mitigate these risks through A/B testing of AI enforcement 

mechanisms, prioritizing human-in-the-loop review for borderline 

cases, and providing actionable, LLM-generated explanations for 

rejections. Transparent appeals processes and bias audits further 

ensure fairness. Product Management must lead these efforts to 

preserve developer trust and ensure seamless rollout of integrity 

features. 

Fig. 16 (a) summarizes the responsibilities of each cross-

functional team in operationalizing LLM-powered platform 

integrity. Effective coordination between product, engineering, 

trust & safety, legal, and UX ensures scalable enforcement, 

regulatory compliance, user transparency, and developer trust 

across the review lifecycle. The cross-functional collaboration 

required to safeguard app ecosystems is illustrated in Fig. 16 (b) 

Embedding trust and safety principles early into platform and 

product design prevents security retrofitting later—a common 

failure mode in reactive governance structures [26]. 

 

 

(a) 

 

(b) 

Fig. 16. (a) Key cross-functional teams and their roles in platform safety. 

Product Management defines review flows and drives strategic alignment; 

Engineering builds LLM-based review pipelines and analyzers; Trust & Safety 

Operations manages escalations and human-AI interaction; Legal and Policy 

teams ensure regulatory compliance and translate rules into actionable 

enforcement; and UX/Developer Relations provide feedback and resolve 

flagged issues to improve developer experience and user trust, (b) Cross-

functional collaboration architecture for building safe app ecosystems 

 

B. Regulatory Compliance Automation (GDPR, CCPA, DSA 

Alignment) 

Global regulatory complexity is rising sharply, driven by new 

legislation and evolving interpretations of data privacy and content 

governance across different jurisdictions [8], [10], [179], [182]. 

Manual compliance review is increasingly infeasible at scale, 

especially given the rapid pace of app submissions and content 

generation [73], [128]. LLMs can significantly assist in automating 

and streamlining regulatory compliance by: 

Mapping App Behaviors to Regulatory Requirements: 

LLMs can analyze app code and dynamic behaviors (e.g., data 

collection, sharing practices, consent flows) and automatically map 

Team Responsibilities 

Product 

Management 

Defines review flows, risk frameworks, developer 

experiences, and cross-team priorities 

Engineering 
Builds LLM-based review pipelines, policy 

analyzers, static and dynamic code analyzers 

Trust & Safety 

Operations 

Triages escalations, manages takedowns, fine-tunes 

human-AI reviewer interactions 

Legal and Policy 

Ensures platform rules align with GDPR, CCPA, 

DSA; translates regulations into product 

enforcement 

UX and 

Developer 

Relations 

Provides actionable developer feedback and helps 

resolve flagged issues quickly 
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them against specific regulatory requirements. This allows for 

verification of lawful bases for data processing under GDPR [6], 

confirmation of clear opt-out flows under CCPA [7], or assessment 

of child data handling under COPPA [111]. Advanced techniques 

involve using LLMs to build knowledge graphs of legal texts and 

app functionalities for precise matching [36], [186]. 

Flagging Missing Disclosures and Inconsistencies: LLMs can 

intelligently detect omissions in privacy policies, terms of service, 

or in-app disclosures, such as insufficient transparency about third-

party SDK usage [16], [105], or failure to detail cross-border data 

transfers. They can also highlight contradictions between stated 

policies and observed app behavior [103], [104]. 

Suggesting Region-Specific Corrective Actions: Leveraging 

their knowledge of diverse legal frameworks, LLMs can propose 

tailored corrective actions for non-compliant apps. This could 

include recommending the inclusion of "Data Deletion Requests" 

links for jurisdictions that require them, or advising on specific 

consent banners needed for EU users [18], [156]. 

Automated Regulatory Impact Assessments: For new 

features or significant app updates, LLMs can perform a 

preliminary regulatory impact assessment by analyzing the 

proposed changes against relevant laws, flagging potential 

compliance hurdles proactively [187]. 

Real-time Policy Monitoring: Beyond initial review, LLMs 

can continuously monitor published apps for changes in behavior or 

metadata that might lead to new compliance risks, enabling 

proactive alerts and enforcement actions [44], [116]. 

Google Play and Apple's growing emphasis on transparent 

privacy labels (e.g., Apple's Privacy Nutrition Labels) and vigorous 

enforcement of regional compliance practices exemplify this 

strategic shift towards automated compliance [7], [8], [9]. The 

automation of regulatory compliance checks using LLMs is 

depicted in Fig. 17. Platforms that proactively operationalize 

complex compliance frameworks via LLMs will be better 

positioned to avoid severe regulatory penalties, public backlash, and 

direct governmental intervention, ultimately building stronger 

foundations of trust with both users and regulators [27], [49], [188]. 

 

 

Fig. 17. LLM-powered compliance automation flow for GDPR, CCPA, 

and DSA alignment 

 

C. Metrics: Measuring Impact, Speed, Accuracy, and 

Fairness 

Building sophisticated AI-augmented review pipelines is a 

critical first step, but it is insufficient without robust mechanisms to 

track operational metrics, measure impact, and continuously 

improve their effectiveness [35], [51], [189]. A comprehensive 

metrics framework is essential for assessing the performance of 

LLM-powered systems, identifying areas for optimization, and 

ensuring fairness and transparency in moderation decisions [46], 

[190]. Key metrics include: 

Reviewer Throughput: Quantifying the number of apps or 

content items reviewed per human reviewer per day. LLM 

assistance is expected to significantly boost this metric by 

automating routine tasks and intelligently triaging complex cases 

[35], [51]. 

Policy Violation Detection Rate: The percentage of submitted 

apps or content items accurately flagged for policy violations by the 

automated or augmented system. This measures the efficacy of the 

detection models [154]. 

False Positive Rate (FPR): The percentage of non-violating 

apps or content items incorrectly flagged by the system. Minimizing 

FPR is crucial to avoid developer frustration and unnecessary 

operational overhead [149], [154]. 

False Negative Rate (FNR): The percentage of violating apps 

or content items that are missed by the system and incorrectly 

allowed onto the platform. Minimizing FNR is paramount for 

maintaining platform safety and user trust [154]. 

F1 Score: A harmonic mean of precision and recall, often used 

in static analysis and abuse detection to provide a balanced measure 

of a model's accuracy [19], [83]. 

Developer Feedback Scores: Measuring developer satisfaction 

with the clarity, speed, fairness, and helpfulness of platform 

feedback and rejection reasons [23], [149]. This can be gathered 

through surveys or direct feedback channels. 

Regulatory Compliance Rates: The proportion of apps or 

content items meeting specific regulatory requirements (e.g., 

GDPR, CCPA, DSA standards) post-review. This directly measures 

the effectiveness of compliance automation [156]. 

Appeal Success Rate: The percentage of developer appeals 

against moderation decisions that are overturned, indicating 

potential areas where AI models or human-AI interactions might 

need refinement [191]. 

Time to Decision (TTD): The average time taken from 

submission to a final review decision, which AI automation aims to 

drastically reduce for both accepted and rejected submissions [140]. 

Operational metrics for evaluating the effectiveness of LLM-

augmented review pipelines are listed in Table 13. Ongoing, metric-

driven optimization ensures that LLM integration improves not just 

operational speed and efficiency, but also decision quality, fairness, 

and overall user and developer trust [35], [189]. This continuous 

feedback loop is vital for an adaptive and resilient platform integrity 

system [116]. 
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Table 13. Key operational metrics for evaluating LLM-powered app 

review systems 

Metric Definition Goal 

Reviewer 

Throughput 

Apps/content items reviewed per 

human reviewer per day, reflecting 

efficiency gains from LLM assistance. 

Increase 

Policy Violation 

Detection Rate 

Percentage of submitted apps/content 

items accurately flagged for policy 

violations.  

Maximize 

False Positive 

Rate (FPR)

  

Percentage of non-violating 

apps/content items incorrectly flagged, 

leading to unnecessary human review 

or developer friction.  

Minimize 

False Negative 

Rate (FNR)

  

Percentage of violating apps/content 

items missed by the system, posing 

risks to platform safety and user trust.

  

Minimize 

F1 Score  Harmonic mean of precision and recall 

for detection models, providing a 

balanced measure of accuracy.  

Maximize 

Developer 

Feedback Score

  

Developer satisfaction with the clarity, 

speed, and fairness of rejection 

reasons and feedback from the 

platform.  

Maximize 

Regulatory 

Compliance Rate

  

Percentage of apps/content items 

meeting GDPR, CCPA, DSA, and 

other relevant legal standards after 

review.  

Maximize 

Appeal Success 

Rate 

Percentage of developer appeals that 

result in an overturned decision, 

indicating areas for model refinement 

or human-AI interaction improvement. 

Optimize 

Time to Decision 

(TTD) 

Average time from submission to final 

review decision (accept or reject), 

reflecting process efficiency.  

Decrease 

 

VI. CASE STUDY: MAJOR PLATFORM INITIATIVES AND LLM 

INTEGRATION FOR INTEGRITY 

Major platform operators have already embarked on extensive 

efforts to deploy LLM-powered and AI-augmented technologies to 

profoundly improve app safety, enhance regulatory compliance, and 

optimize the developer experience within their vast ecosystems [42], 

[45], [192]. This extends beyond app development to encompass the 

integrity of other digital interactions, such as safeguarding e-commerce 

platforms from fraudulent sellers and mitigating misuse by social media 

users. Studying these pioneering initiatives provides invaluable real-

world examples and practical insights into how scalable trust and safety 

architectures are evolving in practice [193]. These efforts serve as 

blueprints for broader industry adoption and highlight critical 

successes, persistent challenges, and burgeoning opportunities for 

further innovation in AI-driven platform governance. 

In app ecosystems, key initiatives by Google Play and Apple 

App Store provide valuable insights into the practical deployment 

of LLM-powered platform integrity systems. While these case 

studies clearly demonstrate the significant impact of LLM 

integration, future industry reporting would greatly benefit from 

more explicit quantitative comparisons, such as 'before and after' 

metrics on average review times or reductions in specific false 

positive rates following LLM deployment, to more fully illustrate 

the efficiency and accuracy gains. 

This section reviews their successes, implementation 

challenges, and emerging opportunities. Importantly, similar 

modernization efforts are now actively underway across other 

digital environments, including generative AI marketplaces (e.g., 

Hugging Face Spaces, with its focus on responsible model sharing 

[56]), digital commerce platforms (e.g., Amazon, Etsy, and 

Shopify, where AI supports both content generation and complex 

policy enforcement [57], [80]), and leading financial services 

platforms which are deploying LLMs for critical security, fraud 

detection, and compliance functions. By examining efforts across 

Google, Apple, Amazon, leading financial platforms, Meta, and 

Hugging Face, we highlight both best practices and transferable 

lessons that can inform platform governance across app stores, Gen-

AI hubs, online marketplaces, and financial systems. 

 

A.  Google's SAFE Framework, App Defense Alliance, and 

Real-Time Protections 

Google Play operates one of the world's largest and most 

complex app ecosystems, serving over three billion active Android 

devices globally [44], [194]. To safeguard this expansive 

environment from a constant barrage of evolving threats, Google 

has deployed a multi-layered strategy involving a suite of initiatives 

and partnerships [195]: 

SAFE Principles: Google's commitment to platform integrity 

is encapsulated in its SAFE Principles: Safeguard users, Advocate 

developer protection, Foster responsible innovation, and Evolve 

platform defenses [42], [44]. These principles guide their approach 

to app security and policy enforcement, emphasizing a holistic view 

of trust. 

App Defense Alliance (ADA): Recognizing that no single 

entity can combat global mobile threats alone, Google co-founded 

the App Defense Alliance (ADA). This is a crucial cross-industry 

partnership with leading cybersecurity firms such as ESET, 

Lookout, Zimperium, as well as major platform players like Meta 

and Microsoft, aimed at setting and continuously raising mobile 

security standards and fostering collaborative threat intelligence 

sharing [43], [196]. The ADA focuses on pre-vetting apps for 

malware before they reach users, creating a stronger defense 

perimeter. 

Mobile App Security Assessment (MASA): Building on the 

ADA's foundation, Google introduced the MASA program, which 

provides independent, third-party validation of app security 

practices for high-profile or sensitive apps listed on the Play Store 

[43], [197]. This voluntary assessment helps developers prove the 

robustness of their security posture and enhances user trust. 

Real-time Scanning with Play Protect: Google Play Protect is 

a cornerstone of Android security, leveraging advanced machine 

learning (ML) and deep code-level analysis to detect and neutralize 

threats. Crucially, it employs sophisticated AI techniques to identify 

polymorphic malware and unwanted software in apps, even those 

downloaded outside the Play Store, performing real-time scanning 

on billions of installations daily [44], [110], [198]. Play Protect's 

ability to adapt to evolving malware strains is a direct result of its 

continuous learning capabilities.  

These real-time protections received significant enhancements 

in 2025, with Google Play Protect's on-device intelligence being 

updated with new rules to identify malware families even prior to 

installation and its live threat detection capabilities expanded to 

identify deceptive app behaviors such as icon hiding or alteration 
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[82]. Further bolstering user safety in 2025, Android introduced on-

device protections to block risky security actions during suspicious 

phone calls with non-contacts—such as attempts to disable Play 

Protect, sideload unvetted apps, or grant excessive accessibility 

permissions—and began piloting enhanced in-call warnings for 

banking app usage during screen sharing sessions with unknown 

contacts [82]. 

Google Play SDK Index: To address the growing supply chain 

risks introduced by third-party libraries, Google launched the 

Google Play SDK Index. This initiative provides developers with 

transparency and visibility into the privacy and security profiles of 

thousands of commercially available SDKs, helping them make 

more informed and safer integration choices before submission 

[44], [71], [92]. It acts as a preventative measure, reducing the 

attack surface introduced by vulnerable or malicious dependencies. 

In 2024, Google reported impressive results, stating that its AI-

assisted review systems played a pivotal role in blocking over 2.36 

million policy-violating apps from being published on Google Play 

[44]. Furthermore, 92% of high-risk reviews now involve LLM-

assisted triage, demonstrating the significant impact of AI in 

streamlining the human review process and focusing human 

attention where it's most needed [44]. Table 14 summarizes key 

Google Play initiatives and their contributions to platform safety 

and security. The comprehensive app safety initiatives deployed by 

Google Play are visually represented in Fig. 18, showcasing the 

deep integration of various technologies and strategic 

collaborations. 

Fig. 18. Overview of Google Play's app safety initiatives and partnerships 

The effectiveness of Google’s platform integrity strategy is 

underpinned by a combination of sophisticated technical 

capabilities and strategic organizational enablers: 

LLM-assisted Triage at Scale: By integrating large language 

models directly into their review workflows, Google has enabled 

faster identification and prioritization of high-risk submissions. 

This intelligent triage system has been instrumental in blocking 

millions of policy-violating apps, significantly enhancing the 

efficiency and coverage of their safety operations [44], [35]. 

Semantic Code Analysis and Metadata Reasoning: Google's 

systems leverage LLMs to perform deep semantic reasoning over 

both app code and declared metadata. This allows for the 

sophisticated detection of inconsistencies between an app's stated 

claims (e.g., in descriptions or privacy policies) and its actual 

runtime behavior, effectively countering deceptive practices and 

hidden functionalities [34], [97]. 

Cross-industry Coordination via ADA: The App Defense 

Alliance [43] is a testament to the power of collective defense. It 

fosters collaborative threat intelligence sharing, enables rapid 

dissemination of information about new mobile security 

vulnerabilities, and promotes standardization of best practices 

among major industry partners, thereby creating a more robust 

collective security posture [196], [199]. 

Proactive Threat Modeling through SDK Indexing: The 

Google Play SDK Index [44] represents a proactive approach to 

supply chain security. By providing developers with transparent 

risk profiles for third-party integrations, it helps to prevent 

vulnerable or privacy-violating components from ever entering the 

ecosystem, addressing issues upstream rather than reactively 

downstream [71], [92]. 

End-to-End Platform Hardening: LLMs are integrated across 

the entire app lifecycle, from initial submission checks and 

continuous scanning with Play Protect to enforcement systems. This 

creates a closed feedback loop, where insights from blocked threats 

and policy violations are continuously fed back into the AI models, 

enabling iterative safety improvement and an adaptive defense 

against new attack vectors [116], [200]. 

Google's commitment to evolving platform defenses and 

enhancing user privacy in 2025 also includes the expansion of AI-

powered scam detection in Google Messages to a wider array of 

sophisticated scam types, the upcoming launch of Key Verifier to 

combat impersonation, and strengthened mobile theft protections 

like hardened Factory Reset protocols and more secure OTP 

handling on locked screens [82]. 

Table 14. Key Google Play initiatives and their impact on app safety 

and security 
Initiative Description Key Metrics/Impact 

SAFE Principles 

Safeguard users, 

advocate developer 

protection, foster 

responsible innovation 

92% of high-risk 

reviews now involve 

LLM-assisted triage 

App Defense Alliance 

(ADA) 

Cross-industry 

partnership for mobile 

security standards 

Strengthens mobile 

security frameworks 

Mobile App Security 

Assessment (MASA) 

Independent validation 

of app security 

practices 

Ensures better app 

security for Play 

Store 

Real-Time Scanning 

with Play Protect 

Detects polymorphic 

malware using 

machine learning 

Blocked 2.36 million 

policy-violating apps 

in 2024 

Google Play SDK 

Index 

Provides visibility into 

third-party SDK risks 

Helps developers 

make safer SDK 

integration choices 

 

B. Apple's LLM-Based Review Summarization and Privacy 

Enhancements 

Apple’s App Store review process has historically been 

characterized by a heavily manual, curated approach, emphasizing 

high-quality and consistent user experiences [201], [202], [203]. 

However, the exponential scale and increasing complexity of app 

submissions, particularly with the advent of AI-assisted 

development, have significantly driven the imperative for advanced 

automation within their review ecosystem [54], [73]. 
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Table 15 outlines Apple's key initiatives for enhancing privacy 

and review processes with LLM integration. Fig. 19 illustrates 

Apple’s LLM-based review summarization process, highlighting 

key steps for flagging and addressing emerging risks and 

streamlining human reviewer workflows.  

 

 

Fig. 19. Flow of Apple's LLM-based review summarization and risk 

flagging system 

 

 Table 15. Apple’s LLM-based review summarization and privacy-

enhancing initiatives 

 

In 2025, Apple Machine Learning Research unveiled its LLM-

Based Review Summarization System [45], a significant 

innovation which functions to: 

Periodically synthesize vast volumes of unstructured user 

reviews into actionable, concise summaries, transforming 

qualitative feedback into quantifiable insights [45], [204]. 

Automatically flag emerging risks identified from user 

feedback, such as performance regressions, novel abusive 

behaviors, security vulnerabilities, and unmet user expectations, 

allowing for proactive intervention [159], [205]. 

Significantly enhance human reviewer productivity by pre-

digesting massive amounts of data and focusing their attention on 

high-risk apps or critical feedback areas that require nuanced human 

judgment, rather than rote manual scanning [174], [175]. 

Furthermore, Apple has demonstrated a strong commitment to 

privacy and safety through several other key initiatives: 

Expanded Privacy Nutrition Labels: Following its successful 

introduction of Privacy Nutrition Labels, Apple has continuously 

expanded and refined these requirements, mandating explicit and 

clear disclosures of data collection and usage practices directly on 

app product pages [206]. This initiative aims to increase 

transparency for users and hold developers accountable for their 

data handling [99], [207]. 

Integrated On-Device and Server-Side Foundation Models: 

Apple has strategically integrated both on-device and server-side 

foundation models into its App Store moderation pipeline [208]. 

This hybrid approach is designed to balance the critical need for 

privacy preservation (by processing sensitive data locally on the 

device where possible [157]) with the demands of scalability and 

access to large-scale threat intelligence (leveraging powerful 

server-side AI for broader analysis [158]) [36]. 

Emphasized Dynamic Topic Modeling for User Feedback: 

Utilizing advanced LLM capabilities, Apple prioritizes and 

analyzes user feedback through dynamic topic modeling [209]. 

This allows them to automatically identify and elevate review topics 

most relevant to core app experience and emergent issues, rather 

than being sidetracked by out-of-app factors or noise [159], [45]. 

This improves both reviewer efficiency and the overall developer 

experience by focusing on pertinent feedback. 

Cross-Functional Human-in-the-Loop Workflows: Apple’s 

approach explicitly augments, rather than replaces, human 

reviewers with LLMs [58]. This ensures that nuanced, borderline, 

or highly complex cases are escalated to human experts with rich, 

contextual summaries provided by the AI, ensuring robust decision-

making and preventing erroneous auto-resolutions [174], [190]. 

Despite these significant advancements, Apple's integration of 

LLMs into App Store operations also illuminates several common 

challenges inherent in deploying advanced AI for platform 

integrity: 

Explainability Gaps: A recurring issue is that current LLMs 

often fail to provide transparent, human-interpretable rationales 

behind complex moderation decisions [46], [190]. This "black box" 

problem can lead to developer frustration and challenges in appeals 

processes. 

Model Drift: Without continuous monitoring and regular 

retraining, AI models can suffer from model drift, becoming 

outdated as new abuse tactics, linguistic nuances, or policy 

interpretations evolve [116], [200]. This necessitates robust 

feedback loops and adaptive learning mechanisms. 

Cross-Jurisdictional Enforcement Complexity: Differences 

in regional regulations (e.g., specific consent requirements under 

GDPR vs. general consumer protection under the DSA) remain 

difficult to encode and apply uniformly across a global platform, 

requiring sophisticated legal and technical alignment [10], [182]. 

Addressing these challenges points to several Future 

Directions for research and development: 

Research on Hybrid Human-AI Review Loops with 

Transparent Escalation Paths: Further work is needed to optimize 

the collaboration between human experts and AI systems, ensuring 

that AI provides clear, auditable explanations for its decisions and 

that humans can efficiently provide oversight and corrections [175], 

[210]. 

Expanded Educational Tools: Creating educational 

resources—perhaps like CloudLab-based SDN security labs 

[211]—can provide a useful template for teaching responsible LLM 

Initiative Description Impact 

LLM-Based Review 

Summarization 

Synthesizes user 

reviews into 

actionable summaries 

Flags emerging risks, 

enhances reviewer 

productivity 

Privacy Nutrition 

Labels 

Explicit disclosures 

of data collection 

practices 

Increases transparency 

for users 

On-Device & 

Server-Side Models 

Integrates models for 

moderation 

Balances privacy and 

scalability 

Dynamic Topic 

Modeling 

Prioritizes user 

feedback aligned 

with app experience 

Ensures more relevant 

feedback gets attention 
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usage and abuse detection strategies to developers, fostering a more 

secure ecosystem from the ground up [212]. 

Multi-Agent Review Systems: Exploring architectures that 

combine multiple LLMs or other AI models (e.g., rule-based, 

statistical models) to perform different aspects of review, 

potentially leveraging ensemble methods for improved robustness 

and accuracy [213]. 

Differential Privacy and Federated Fine-tuning: For 

privacy-sensitive data, advancements in differential privacy and 

federated learning techniques can enable safe, user-level 

customization and collaborative model training without 

compromising individual user data [47], [157]. 

Standardization of LLM Safety Benchmarks for Platform 

Governance: Developing universally accepted benchmarks and 

metrics for evaluating the safety and integrity performance of LLMs 

in moderation and review contexts would drive accountability and 

best practices across the industry [189], [214]. 

 

C. Amazon: Combating Counterfeits, Fraud, and Listing 

Abuse in E-commerce 

Amazon, as the world's largest online retailer and a massive 

marketplace for third-party sellers, faces a relentless battle against 

counterfeits, product fraud, misleading listings, fake reviews, 

and payment fraud [215]. LLMs and generative AI are becoming 

increasingly central to their multi-layered defense strategy. 

Key Initiatives and Contributions: 

Proactive Counterfeit Detection with AI: Amazon invests 

heavily in AI, including LLMs and advanced machine learning, to 

proactively scan and block counterfeit products before they even 

reach customers. Their "Project Zero" initiative, launched in 2019, 

leverages AI to identify infringing listings based on a vast dataset 

of genuine product information and known counterfeit patterns. In 

2023, Amazon's proactive controls blocked over 99% of suspected 

infringing listings before a brand ever had to report them, and they 

identified, seized, and disposed of more than 7 million counterfeit 

products worldwide [216]. LLMs assist in analyzing product 

descriptions, images, and brand identifiers for anomalies or 

suspicious claims, including complex visual IP infringements like 

logos and patterns [217]. 

Fraud Detection (Payment, Account Takeover, Returns): 

Amazon employs sophisticated ML/AI solutions (like Amazon 

Fraud Detector, a service built on Amazon's 20+ years of 

experience) to detect various types of fraud in real-time [218]. This 

includes:  

Payment Fraud: Analyzing transaction patterns, user behavior, 

and historical data to identify suspicious purchases. 

New Account Fraud/Account Takeovers: Detecting fake 

accounts or compromised logins by analyzing registration data, 

login patterns, and potentially AI-generated user profiles. In 2023, 

Amazon stopped over 700,000 bad actor attempts to create new 

selling accounts before they could list a single product [216]. 

Returns Fraud: Using AI to identify patterns of fraudulent 

returns or claims, often linked to serial returners or organized abuse. 

LLMs can assist in analyzing textual data related to customer 

interactions, dispute claims, and seller communications to identify 

deceptive language or coordinated fraud attempts. 

Combating Fake Reviews and Synthetic Content: As 

highlighted in  our paper, LLMs are adept at generating persuasive 

text, making fake reviews a significant threat. Amazon uses AI to 

analyze review text, reviewer behavior, and review patterns to 

identify and suppress AI-generated or otherwise inauthentic 

reviews [219], [220]. They look for unnatural language, repetition, 

or unusual spikes in positive/negative sentiment that might indicate 

manipulation. In 2022, Amazon proactively blocked more than 200 

million suspected fake reviews [219]. They utilize large language 

models alongside natural language processing techniques to analyze 

anomalies in data, as well as deep graph neural networks to detect 

groups of bad actors [219]. 

Seller and Listing Vetting: AI is used to vet third-party sellers 

and their product listings. This involves analyzing seller 

information, historical performance, product images, and 

descriptions. LLMs can cross-reference listing content against 

known brand information and product specifications to identify 

misrepresentation or non-compliance. 

Customer Service Augmentation (for fraud/abuse queries): 

While not direct integrity enforcement, Amazon's use of AI in 

customer service (e.g., for sellers) can indirectly contribute to 

integrity by quickly resolving legitimate issues, freeing up human 

agents to focus on more complex fraud cases, and potentially 

identifying new fraud patterns from aggregated customer inquiries. 

Fig. 20 illustrates Amazon’s multi-pronged approach to 

platform integrity, highlighting how LLMs and AI are deployed 

across key areas such as counterfeit detection, fraud prevention, 

synthetic review suppression, and seller vetting. 

 

 

Fig. 20. Amazon’s AI- and LLM-powered strategy for combating 

counterfeits, fraud, and listing abuse in e-commerce. Each pillar—from 

proactive counterfeit detection to seller vetting—leverages generative AI, 

machine learning, and graph-based analysis to secure platform integrity at 

scale. 
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D. Financial Platforms: LLM-Powered Safeguards for Trust 

and Compliance 

D.1. EVOLVING THREATS AND LLM APPLICATIONS IN 

FINANCIAL SERVICES 

Leading financial services platforms have begun integrating 

LLMs and generative AI to counter evolving threats like synthetic 

identity fraud, AI-generated scams, and regulatory evasion, while 

also accelerating compliance workflows. These deployments reflect 

growing adoption of trust and safety architectures previously 

limited to app and content ecosystems. 

Key Applications: 

• Synthetic Identity Detection: JPMorgan Chase and Capital One 

use AI models, including transformer-based architectures, to 

detect synthetic identities by analyzing linguistic inconsistencies, 

metadata patterns, and behavioral anomalies across applications 

and transaction flows [429], [430]. 

• KYC/AML Automation: Fintech firms like Stripe, Plaid, and 

Revolut have deployed LLM-based systems to automate Know 

Your Customer (KYC) and Anti-Money Laundering (AML) 

processes—flagging suspicious documents, inconsistencies, and 

evasive language during onboarding or transaction reviews [431], 

[432]. 

• Regulatory Compliance: Platforms are applying GenAI to parse 

complex regulatory texts (e.g., FinCEN, SEC, MiFID II, GDPR) 

and map them to internal policy violations, reducing manual 

review time and improving auditability [433], [434]. LLMs also 

summarize compliance reports, generate policy update alerts, and 

assist legal reviewers [435]. 

• Financial Scam Detection: LLMs assist fraud teams at banks 

and payment platforms by analyzing message content, app 

interactions, and behavioral signals in real-time—detecting 

romance scams, phishing attempts, and impersonation fraud 

[436], [437]. 

• Multilingual Risk Flagging: LLMs trained across languages 

assist global finance platforms in detecting fraud attempts or 

policy violations in regions with lower model coverage (e.g., 

Southeast Asia, LATAM), improving safety without scaling 

human teams [438]. 

D.2. TECHNICAL AND ORGANIZATIONAL ENABLERS FOR 

FINANCIAL LLM DEPLOYMENT 

• Transformer-based anomaly detection in KYC/Fraud logs 

• LLM-human hybrid workflows for flagged transaction reviews 

• Real-time LLM inference for document parsing and report 

summarization 

• API-integrated compliance pipelines across financial risk engines 

D.3. QUANTIFYING IMPACT IN FINANCIAL SERVICES 

Table 16 illustrates an end-to-end system integrating LLMs into 

onboarding (KYC), transaction monitoring (AML), document 

parsing, regulatory mapping, and human-in-the-loop review 

escalations. 

Table 16. Real-World LLM Use Cases and Measured Benefits in 

Financial Services 

Initiative Description 
Key Metrics / 

Impact 

Synthetic Identity 

Detection 

Detects fake/AI-

generated customer 

identities 

Reduced fraud 

loss rates by up to 

21% in pilots [429], 

[430] 

KYC/AML 

Automation 

Automates 

document checks and 

behavioral analysis 

Accelerated 

onboarding by 40–

60% [431] 

Compliance 

Parsing 

Uses LLMs to 

align operations with 

FinCEN, SEC, GDPR, 

MiFID II 

Reduced policy 

audit workload by 30–

50% [433], [434] 

Scam & Phishing 

Detection 

LLMs analyze 

communication 

patterns and language 

of deception 

Real-time 

flagging of social 

engineering attempts 

[436], [437] 

Multilingual 

Moderation 

Flags risk in non-

English regions 

Boosted global 

fraud detection 

coverage and accuracy 

[438] 

D.4. ARCHITECTURAL INTEGRATION AND VISUAL 

REPRESENTATION 

Fig. 21 provides a visual representation of a comprehensive 

financial platform LLM architecture designed for fraud and 

compliance. 

 

Fig. 21. This architecture diagram depicts an end-to-end system where 

LLMs are integrated into financial platform workflows—from onboarding 

and AML monitoring to document analysis and compliance assurance. It 

emphasizes real-time inference, modular integration, and human-in-the-loop 

escalations for enhanced trust and operational resilience. 

E. Meta (Facebook, Instagram, WhatsApp): Combating 

Misinformation and Harmful Content at Scale 

Meta's platforms (Facebook, Instagram, WhatsApp) are prime 

examples of environments battling misinformation, hate speech, 

violent extremism, and coordinated inauthentic behavior at an 

unprecedented scale [221]. Their approach to LLM and AI 

integration for content moderation is a critical case study that differs 

significantly from app stores due to the real-time, user-generated 

nature of the content. 

Key Initiatives and Contributions: 

Large-Scale Content Moderation with LLMs: Meta uses 

LLMs extensively for text, image, and video analysis to identify 

violations of their Community Standards across billions of posts 

daily [222], [223]. This includes detecting hate speech, graphic 
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violence, and misinformation. They leverage models like XLMR 

(Cross-lingual Language Model RoBERTa) for multilingual 

content understanding and self-supervised learning to train models 

on vast unlabeled datasets, which is crucial for identifying emerging 

harmful narratives and adapting to new abuses [224]. 

Fact-Checking Partnerships and AI Augmentation: Meta 

collaborates with a global network of third-party fact-checkers. 

LLMs assist in triaging and prioritizing content for human review 

by identifying potential misinformation at scale, thereby 

accelerating the fact-checking process. This involves analyzing 

claims, identifying sources, and recognizing patterns of deceptive 

language [223]. 

Proactive Detection of Coordinated Inauthentic Behavior 

(CIB): LLMs are instrumental in identifying CIB campaigns, where 

networks of fake accounts spread propaganda or manipulate public 

discourse. These models can analyze linguistic patterns, account 

behavior, and content themes to detect coordinated efforts that 

human reviewers might miss, often leveraging graph neural 

networks to identify suspicious connections [225]. Meta reported 

taking action on 1.3 billion pieces of content for violating its 

Community Standards between July and September 2023, with 

97.8% of hate speech content detected proactively by AI [226]. 

Privacy-Preserving AI for Sensitive Content: For platforms 

like WhatsApp, Meta has explored and implemented on-device 

machine learning and federated learning to detect harmful 

content (e.g., child exploitation material) while preserving end-to-

end encryption and user privacy [227]. This approach allows for 

sensitive data processing locally without compromising individual 

user privacy, aligning with the principles discussed in your 

"Federated and On-Device Review Systems" section. 

Adversarial AI and Red Teaming: Given the sophisticated 

nature of adversaries, Meta invests heavily in red-teaming their AI 

moderation systems. They actively simulate adversarial attacks, 

including the generation of novel harmful content using generative 

AI, to test the robustness and resilience of their detection models 

against prompt injection, data poisoning, and other manipulation 

techniques [116], [228]. 

Fig. 22 presents Meta’s multi-pronged AI strategy for 

combating misinformation and harmful content across its platforms. 

The graphic highlights how LLMs, graph neural networks, privacy-

preserving AI, and fact-checking augmentation are integrated into a 

comprehensive content integrity framework. 

 

Fig. 22. Meta’s AI-driven strategy for combating misinformation, hate 

speech, and coordinated inauthentic behavior at scale. The framework 

incorporates large-scale content moderation using LLMs, AI-assisted fact-

checking prioritization, graph-based detection of fake behavior, and privacy-

preserving approaches for encrypted platforms like WhatsApp. 

 

F.  Hugging Face: Integrity in AI Model Sharing and 

Responsible AI 

Hugging Face is a leading platform for sharing pre-trained AI 

models, datasets, and demos (Spaces) [229]. As a "marketplace" for 

AI itself, it presents unique integrity challenges related to model 

safety, bias, responsible AI use, and the potential for malicious 

models or datasets. 

Key Initiatives and Contributions: 

Responsible AI Licensing and Documentation (Model 

Cards and Data Cards): Hugging Face strongly promotes and 

often requires the use of model cards and data cards for shared AI 

assets. LLMs can assist in analyzing these cards for completeness, 

identifying ambiguities, or flagging potential misrepresentations 

regarding model capabilities, limitations, and ethical considerations 

[81], [230]. This helps ensure transparency about model origins, 

intended uses, and known biases. 

Automated Scanning for Harmful Outputs/Biases: LLMs 

and other AI techniques are being explored and implemented to 

proactively test and analyze the outputs of shared generative models 

(e.g., text generation, image generation) for harmful content, 

biases, or policy violations [231]. This might involve feeding 

adversarial prompts to models within a sandboxed environment to 

assess their safety before widespread public access. 

Content Moderation of Shared Demos (Spaces): The 

"Spaces" feature allows users to host interactive AI demos. LLMs 

can be used to monitor user interactions with these demos and their 

generated content for abuse, misuse, or the creation of harmful 

outputs, similar to general content moderation but with an added 

layer of AI-specific risk [232]. 

Vulnerability Detection in AI Codebases: As models and 

datasets are shared on the platform, LLMs can be employed for 

static code analysis (as we discussed) on the model's underlying 

code or accompanying scripts to detect security vulnerabilities or 
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malicious logic within the AI artifacts themselves, contributing to 

the security of the AI supply chain [19], [83]. 

Community-Driven Reporting and Governance: Hugging 

Face heavily relies on its vibrant community for flagging issues. 

LLMs can help triage and summarize community reports about 

problematic models or datasets, guiding human review and 

intervention more efficiently. They also foster open governance and 

community-led discussions about AI ethics [230]. 

Fig. 23 illustrates Hugging Face’s multi-layered approach to 

integrity in AI model sharing. The platform applies LLMs for 

documentation analysis, harmful output detection, code 

vulnerability scanning, and moderation of interactive demos, all 

while leveraging community governance. 

 

 

Fig. 23. Hugging Face’s strategy for integrity in AI model sharing and 

responsible AI. Key initiatives include the use of model and data cards, 

automated bias scanning, content moderation in user-hosted Spaces, and 

LLM-assisted vulnerability detection in shared AI codebases. The platform 

combines technical tools with community-driven governance to ensure safer 

deployment of open-source AI assets. 

 

G. Lessons Learned and Open Challenges from Cross-

Platform Initiatives 

The expanded case studies across app ecosystems, e-commerce, 

social media, and AI model marketplaces highlight both significant 

progress and persistent challenges in leveraging LLMs for platform 

integrity. While the architectures pioneered by Google and Apple 

provide foundational blueprints, the experiences of Amazon, Meta, 

and Hugging Face offer crucial insights into the diverse applications 

and complexities of AI-augmented trust and safety. Scaling 

platform safety in the LLM era is not a static problem but a 

continuously moving target, necessitating adaptive strategies and 

cross-domain learning. 

Here are key lessons learned and the enduring open challenges 

across these leading platforms: 

AI Augmentation is Essential for Scale and Efficiency: All 

platforms demonstrate that manual review is unsustainable given 

the volume and velocity of digital content and app submissions. 

LLMs and AI are indispensable for triaging, filtering, and 

summarizing vast amounts of data, thereby significantly boosting 

human reviewer productivity and enabling real-time detection [35], 

[44], [45], [226]. Google's 92% high-risk review triage with LLMs 

and Meta's 97.8% proactive hate speech detection by AI are prime 

examples. 

Multimodal and Cross-Referential Analysis is Crucial: 

Relying on single data points (e.g., just app metadata or just review 

text) is insufficient for robust integrity. Platforms like Amazon and 

Google Play emphasize cross-validation of storefront claims 

against observed app behavior, code analysis, and user 

feedback [97], [128], [218]. Similarly, Meta correlates textual 

content with user behavior and network patterns to detect 

coordinated abuse [225]. Hugging Face cross-references model 

cards with code and inferred behavior [81], [230]. This holistic 

approach is vital for detecting sophisticated deception. 

Proactive Engagement and Transparency with 

Developers/Users Matters: Platforms that provide clear guidance, 

such as Google's SDK Index [44] and Apple's Privacy Nutrition 

Labels [206], enable developers to build safer products upstream. 

Auto-generated, actionable feedback (as discussed by Apple and 

envisioned for app review [45], [190]) reduces developer friction 

and improves compliance rates. For users, transparency about 

moderation decisions (e.g., Meta's Content Library or Amazon's 

review integrity reports) builds trust. 

Regulatory Alignment Remains Complex and Dynamic: 

The proliferation of laws like GDPR, CCPA, and DSA, coupled 

with emerging AI-specific regulations (e.g., EU AI Act), presents a 

fragmented and continuously evolving compliance landscape [10], 

[40], [182]. While LLMs can automate compliance checks [36], 

[133], the nuanced, jurisdiction-dependent interpretations and the 

need for real-time adaptation to legal changes remain significant 

challenges for all global platforms. 

Explainability of LLM Decisions Needs Work: A pervasive 

challenge across all AI-driven moderation systems is the "black 

box" problem [46], [233]. Developers, sellers, and users often 

receive opaque decisions without clear rationales, leading to 

frustration, appeals, and a perception of unfairness. Platforms must 

continue to invest in Explainable AI (XAI) to provide transparent, 

auditable, and human-interpretable explanations for enforcement 

actions [191], [234]. 

The Adversarial AI Arms Race is Escalating: As platforms 

deploy more sophisticated AI defenses, malicious actors are 

leveraging LLMs to generate more advanced polymorphic 

malware, synthetic media, and adaptive social engineering schemes 

[32], [74], [179]. Meta's red-teaming efforts and Amazon's ongoing 

battle against AI-generated fake reviews [228], [219] illustrate that 

this is a continuous, dynamic struggle. Maintaining an adaptive, 

continuously learning defense, with strong threat intelligence 

sharing (e.g., Google's ADA [43]), is paramount. 

Unique Domain-Specific Challenges Persist: While 

commonalities exist, each platform type has unique integrity 

concerns. App stores battle malicious code and privacy violations, 

e-commerce faces counterfeits and payment fraud, social media 

grapples with misinformation and hate speech, and AI model hubs 

confront model safety and bias. Solutions must be tailored, even as 

underlying LLM capabilities are shared. 
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Human-in-the-Loop is Indispensable for Nuance: Despite 

AI's advancements, human oversight and judgment remain critical. 

All platforms (Google, Apple, Meta) emphasize human-in-the-loop 

workflows for complex edge cases, policy interpretation, and error 

correction, acknowledging that AI augments, rather than replaces, 

human expertise in sensitive trust and safety domains [58], [174]. 

Fig. 24. summarizes the key lessons and cross-platform 

challenges in applying LLMs for platform integrity. From AI 

scalability and multimodal analysis to regulatory complexity and 

the growing adversarial landscape, the graphic highlights the shared 

and domain-specific insights that emerged across ecosystems like 

app stores, e-commerce, social media, and AI model hubs. 

 

 

 

Fig. 24. Key lessons and open challenges from cross-platform AI integrity 

initiatives. Common themes include the need for scalable AI augmentation, 

multimodal validation, proactive developer engagement, transparency, 

regulatory alignment, explainable AI, adversarial resilience, and the 

continued importance of human oversight. These insights are distilled from 

case studies across Google, Apple, Amazon, Meta, and Hugging Face. 

As summarized in Table 17, scaling platform safety in the LLM 

era is a moving target. However, the architectures pioneered by 

Google, Apple, Amazon, Meta, and Hugging Face provide 

blueprints for broader industry adoption and further research, 

emphasizing shared challenges and collaborative solutions. 

Table 17. Key lessons learned from industry initiatives 

demonstrating best practices for AI-augmented app review, abuse 

detection, and regulatory compliance at scale 

Lesson Example 

AI Augmentation for 

Scale & Efficiency 

Google's 92% high-risk triage with LLMs 

[44]; Meta's AI proactively detects 97.8% of 

hate speech [226]. 

Multimodal & Cross-

Referential Analysis  

Amazon cross-validates product listings with 

images and seller data [218]; Apple 

correlates app behavior with storefront 

claims [97]. 

Proactive 

Developer/User 

Engagement 

Google Play SDK Index [44] & Apple 

Privacy Nutrition Labels [206]; LLM-

generated actionable feedback [45], [190]. 

Regulatory Alignment 

Remains Complex 

Dynamic adaptation needed for DSA & EU 

AI Act enforcement [10], [40]; nuanced 

compliance varies by jurisdiction [182]. 

Explainability of LLM 

Decisions Needs Work 

All platforms face "black box" problem; need 

transparent, human-interpretable rationales 

for moderation [46], [233]. 

Escalating AI 

Adversarial Arms Race 

Amazon's battle against AI-generated fake 

reviews [219]; Meta's red-teaming against 

novel harmful content [228], [226]. 

Unique Domain-Specific 

Challenges 

E-commerce: counterfeits & payment fraud; 

Social media: misinformation & hate speech; 

AI Hubs: model safety & bias. 

Human-in-the-Loop is 

Indispensable 

Google, Apple, Meta all emphasize human 

oversight for complex cases and policy 

interpretation [58], [174]. 

H. Quantifying the Impact of LLM-Augmented Integrity 

Systems: An Illustrative Analysis 

While industry leaders often highlight the volume of threats 

blocked, a more granular understanding of the direct quantitative 

impact of LLM integration is crucial for broader adoption and 

continuous improvement. Direct public metrics are scarce due to 

proprietary reasons, but illustrative examples derived from industry 

reports and operational capabilities can demonstrate the 

transformative efficiency and accuracy gains. 

For instance, consider the impact on average app review times. 

Before LLM integration, platforms might have seen review cycles 

spanning several days or even weeks for complex applications, 

heavily reliant on manual human analysis. With LLM-powered 

triage and automated preliminary analysis, this can be drastically 

reduced. Similarly, LLMs can significantly improve detection rates 

for specific, hard-to-find policy violations while simultaneously 

reducing false positives. 

Table 18 provides illustrative metrics that demonstrate the 

potential impact of LLM integration across various platform 

integrity operations, reflecting the qualitative improvements 

reported by major platforms. These figures are indicative of the 

directional shifts observed in operational efficiency and threat 

detection. 

Table 18. Illustrative Quantitative Impact of LLM-Augmented Platform 

Integrity Systems (Post-LLM Deployment) 

Metric 

Category 

Before LLM 

Integration 

(Illustrative) 

After LLM 

Integration 

(Illustrative) 

Implied 

Improvement 

Average 

App Review 

Time (Days) 

5-7 days 
1-2 days (for 

accepted apps) 

~70-80% 

Reduction 

Policy 

Violation 

Detection 

Rate 

75% 90-95% 
~20% 

Increase 

False 

Positive 

Rate (FPR) 

5% <1% 
~80%+ 

Reduction 

Detection 

Speed 

(Novel 

Threats) 

Days-Weeks Hours-Days ~90% Faster 

Human 

Reviewer 

Throughput 

100 

apps/reviewer/day 

250-400 

apps/reviewer/day 

150-300% 

Increase 

Time to 

Resolve 

Appeal 

(Days) 

15-20 days 5-7 days 
~65-70% 

Reduction 

Compliance 

Audit Time 

(Hours) 

40+ hours/app 5-10 hours/app 
~75-85% 

Reduction 
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Note: These figures are illustrative and represent potential 

improvements based on industry trends and the capabilities of LLM 

augmentation, not specific public disclosures from any single 

platform. 

 

These hypothetical figures underscore that LLMs do not merely 

assist; they fundamentally reshape the economics and scalability of 

platform integrity. The dramatic reduction in review times and false 

positives directly translates to improved satisfaction for developers, 

sellers, and creators and reduced operational costs, while increased 

detection rates and speed enhance user safety and regulatory 

adherence. Further public research and transparent reporting from 

platforms are essential to solidify these quantitative claims and 

establish industry benchmarks. 

 

 

VII.  FUTURE DIRECTIONS AND RESEARCH OPPORTUNITIES 

While the integration of LLMs into mobile app review 

ecosystems and broader digital platforms has yielded measurable 

gains in reviewer efficiency, abuse detection, and compliance 

enforcement, several technical and operational frontiers remain 

open [51], [189], [193]. The dynamic nature of both LLM 

capabilities and adversarial tactics necessitates continuous 

innovation [244]. Future research and platform development should 

critically address these remaining gaps to ensure that app stores and 

digital marketplaces remain secure, trustworthy, and developer-

friendly as LLM technology continues to rapidly evolve [49], [214]. 

Proactive exploration of these areas will be crucial for maintaining 

a resilient and adaptable platform integrity posture [116]. 

The rapid evolution of LLMs and generative AI also places 

unprecedented strain on existing regulatory frameworks. While 

current laws like GDPR and CCPA provide a baseline, they often 

lack specific provisions for governing AI-generated content, 

attribution, provenance, and liability for AI-driven harm. Future 

directions must include advocating for and adapting to new 

legislative approaches—such as the EU AI Act or specific national 

guidelines—that address the unique challenges of synthetic media, 

algorithmic accountability, and the responsible deployment of 

powerful generative models. 

 

A. Fine-tuning LLMs for App Safety Tasks 

Out-of-the-box, general-purpose LLMs are primarily trained for 

broad language understanding and generation tasks. While 

powerful, their effectiveness for highly specialized platform safety 

tasks can be significantly enhanced through domain-specific fine-

tuning [150], [245]. Fine-tuning on rich, platform-specific 

corpora—such as anonymized mobile codebases with labeled 

vulnerabilities, comprehensive regulatory documents, detailed app 

store policies, annotated abuse case studies, and sanitized user 

feedback—profoundly improves their ability to: 

Detect subtle security vulnerabilities: LLMs fine-tuned on 

security datasets can learn to recognize complex code patterns and 

logical flaws that indicate vulnerabilities, even in polymorphic or 

obfuscated code, surpassing the capabilities of generic static 

analyzers [19], [83], [133]. This allows for the identification of not 

just known signatures but also novel exploit patterns [76]. 

Identify nuanced policy violations: By understanding the 

semantic context of platform policies and diverse content types, 

fine-tuned LLMs can discern subtle or implicit policy violations 

that might be missed by keyword-based or rule-based systems 

[156], [129]. This includes recognizing deceptive language [21], 

[98], or harmful intent [25] in app descriptions, user-generated 

content, or developer communications. 

Generate precise and actionable developer feedback: When 

trained on examples of effective review feedback, LLMs can 

produce clear, specific, and helpful rejection reasons and 

remediation suggestions, reducing developer frustration and 

accelerating the compliance process [23], [149], [142]. This shifts 

the paradigm from simple rejection to guided improvement [143]. 

The process of fine-tuning LLMs for app safety tasks is 

conceptually illustrated in Fig. 25. Continued research into more 

efficient and targeted fine-tuning methods (e.g., advanced variants 

of Low-Rank Adaptation [17], adaptive parameter-efficient fine-

tuning [151]) will be crucial for maintaining high detection 

precision, minimizing computational costs, and mitigating issues 

like model drift and hallucinations in rapidly evolving adversarial 

environments [116], [246]. Exploring techniques like reinforcement 

learning from human feedback (RLHF) for safety alignment also 

presents a promising avenue [247]. 
 

 

Fig. 25. Benefits of fine-tuning LLMs for app safety and compliance tasks. 

Fine-tuned models can detect subtle code-level vulnerabilities, identify implicit 

policy violations in content and descriptions, and generate clear, actionable 

feedback for developers. This enables scalable, context-aware enforcement 

that bridges precision and user alignment. 

 

B. Federated and On-Device Review Systems 

Centralized app review pipelines, while efficient for large-scale 

processing, increasingly raise significant privacy concerns, 

especially in tightly regulated markets with strict data localization 

and privacy mandates [157], [158], [182], [248]. Processing 

sensitive user data or proprietary app binaries on central servers can 
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introduce privacy risks and regulatory compliance challenges. To 

address this, federated learning and on-device LLM deployment 

offer promising decentralized paradigms that can enable: 

Privacy-preserving static code analysis: Sensitive app 

binaries or proprietary code snippets could be analyzed directly on 

the developer's machine or in a secure, local environment, with only 

aggregated insights or anonymized threat vectors sent back to the 

platform, minimizing data exposure [134], [249]. 

Distributed abuse detection signals: Local devices could 

autonomously detect suspicious activities or content, aggregating 

detection signals without direct sharing of raw, sensitive user data. 

This is particularly relevant for real-time behavioral analysis and 

fraud detection where immediate processing is beneficial [126], 

[250]. This approach is being actively deployed and enhanced; for 

instance, Google's 2025 updates emphasize AI-powered on-device 

scam detection in Messages and on-device machine learning 

enhancements for Google Play Protect, explicitly designed to keep 

user conversations and app analysis data private to the device while 

improving real-time threat identification [82]. 

Real-time user review mining localized to user devices: User 

feedback and sentiment analysis could be performed directly on the 

user's device, maintaining privacy by only sending anonymized 

trends or aggregated risk indicators to the platform [45], [204]. This 

also enables personalized safety features. 

The federated and on-device review system architecture is 

conceptualized in Fig. 26 (a), illustrating how decentralized app 

reviews can leverage privacy-preserving analysis, secure 

aggregation protocols, and federated learning to minimize direct 

data sharing. Advancements in model compression techniques 

(e.g., quantization, pruning, distillation [152]), differential privacy 

mechanisms [251], and secure multi-party computation (SMC) 

protocols [252] will be key enablers for developing and deploying 

these robust, privacy-preserving decentralized architectures at scale 

[47], [157]. For a better understanding, Fig 26 (b) compares 

centralized and federated LLM deployment.  
 

 

 

(b) 

Fig. 26. (a) Federated and on-device review systems for privacy-

preserving app review, top: On-Device, everything is happening individually 

on the user’s phone, bottom: Federated, devices collaborate peer-to-peer while 

preserving privacy. (b) Architectural comparison between centralized and 

federated LLM deployment. In centralized systems, user data is transmitted 

directly to a cloud-based LLM for processing—raising privacy, security, and 

compliance risks. In contrast, federated learning allows users to train models 

locally and share only encrypted model updates with a global server, 

preserving data locality and enabling privacy-aware AI deployment. This 

distinction is crucial in regulated environments where sensitive user data 

cannot be exported or stored externally. 

 

C. Explainability and Transparency in Review Decisions 

One of the most significant challenges in current LLM-driven 

decision pipelines is the inherent risk of them becoming "black 

boxes," where developers, reviewers, and even regulators struggle 

to understand why an app was flagged, rejected, or impacted by a 

moderation decision [46], [190]. This lack of explainability (XAI) 

and transparency erodes trust, complicates appeals, and hinders 

effective remediation [149], [233]. Future systems should explicitly 

prioritize the following to build more trustworthy AI-powered 

governance: 

Generating human-interpretable rationales for every policy 

flag: Instead of generic error codes, AI systems should provide 

clear, concise, and understandable explanations for why a specific 

policy was violated, pointing to the exact content, code, or behavior 

that triggered the flag [143], [190], [253]. This could involve natural 

language explanations generated by an LLM [142]. 

Supporting structured appeals workflows with machine-

generated evidence summaries: When a developer appeals a 

decision, the system should automatically provide a detailed, AI-

generated summary of the evidence that led to the original decision, 

allowing for a more efficient and fair human review of the appeal 

[191]. This moves beyond simple evidence logging to intelligent 

summarization. 

Ensuring regulatory auditability of automated enforcement 

decisions: Platforms must be able to demonstrate to regulators how 

their AI systems make decisions, particularly for high-risk 

categories or compliance-critical areas [182], [188]. This requires 

robust logging, versioning of models, and the ability to trace 

decisions back to specific data inputs and model logic [27]. (a) 
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Developing counterfactual explanations: For complex cases, 

AI could explain "what if" scenarios, showing developers what 

changes they could make to their app to bring it into compliance ("If 

you remove X permission, your app would no longer violate Y 

policy") [234]. 

The process of improving transparency and explainability in 

LLM-based app review decisions is illustrated in Fig. 27, 

highlighting key stages such as generating human-readable 

rationales, supporting structured appeals, and ensuring regulatory 

auditability. Research in LLM explainability (XAI), causal 

reasoning for content moderation, and techniques like saliency 

maps or attention mechanisms will be critical for balancing 

automated enforcement with developer trust and regulatory 

requirements [46], [212], [254]. 

 

 

Fig. 27. Flowchart illustrating transparency and explainability in LLM-

driven app review decisions 

 

D. Evolving Threats: AI-Powered Malware and Content 

Manipulation 

As platforms and defenders increasingly leverage the power of 

LLMs for sophisticated detection and mitigation, so too will 

malicious actors evolve their strategies, leading to an escalating AI 

arms race in cybersecurity [32], [74], [110]. This constant cat-and-

mouse game means that emerging threats will increasingly be AI-

powered, posing novel challenges for platform integrity. These 

evolving threats include: 

AI-generated polymorphic malware that rewrites itself at 

runtime: Malicious LLMs can be trained to produce highly evasive 

malware variants that dynamically alter their code, structure, or 

behavior during execution, making them exceptionally difficult for 

traditional signature-based or even heuristic detection systems to 

identify [76], [75], [235]. This dynamic obfuscation pushes the 

limits of static and dynamic analysis. 

LLM-driven social engineering attacks with hyper-

personalized phishing flows: Adversarial LLMs can generate 

highly convincing and contextually relevant social engineering 

content, such as personalized phishing emails, fake in-app prompts, 

or deceptive chatbots [79], [125]. These attacks can dynamically 

adapt to user responses, making them far more effective at 

manipulating individuals into revealing sensitive information or 

performing harmful actions than static, templated phishing attempts 

[120], [122]. 

Fake app storefronts dynamically adapting their content 

based on reviewer feedback: Malicious actors can use LLMs to 

create entire fraudulent storefronts (e.g., app descriptions, 

screenshots, reviews) that are designed to mimic legitimate content, 

and then dynamically adjust these elements in response to platform 

review rejections or changes in detection algorithms, effectively 

playing a continuous evasion game [21], [98], [236]. This requires 

adaptive and multi-modal detection strategies. 

Deepfakes and synthetic media for advanced impersonation 

and misinformation: Beyond static images, generative AI can 

create highly realistic deepfake videos and audio, enabling 

sophisticated impersonation for fraud (e.g., fake video calls for 

KYC bypass) or the rapid spread of convincing misinformation and 

propaganda on platforms [77], [237], [238]. 

Automated vulnerability exploitation and penetration 

testing: Future AI systems could potentially automate the discovery 

and exploitation of software vulnerabilities at scale, posing a 

significant threat to app security and underlying platform 

infrastructure [19], [239]. 

Table 19 outlines these emerging threats in LLM-powered app 

security and their potential countermeasures. To stay ahead of these 

rapidly evolving abuse tactics, platforms must invest heavily in 

ongoing adversarial research (red-teaming their own AI 

defenses), establish robust red-teaming programs for their review 

systems, and foster active threat intelligence sharing between 

platforms (e.g., through initiatives like Google's App Defense 

Alliance [43]) [110], [32], [196]. Novel detection approaches, such 

as watermarking AI-generated content to trace its origin [117] or 

applying traffic pattern analysis (originally developed in 

Software-Defined Networking (SDN) contexts [211]) to detect 

coordinated abusive campaigns, may also inform new strategies for 

tracing and mitigating abusive behavior across app ecosystems 

[118], [240].  

Table 19 Emerging threats in LLM-powered app security and potential 

countermeasures 

Threat Type Description Countermeasures 

AI-Generated 

Polymorphic Malware 

Malware that 

rewrites itself at 

runtime, evading 

signature detection. 

Enhanced AI-driven 

malware detection 

systems, behavioral 

analysis, semantic code 

analysis [76], [235]. 

LLM-Driven Social 

Engineering 

Hyper-personalized 

phishing flows and 

deceptive content to 

manipulate users. 

Advanced phishing 

detection algorithms 

using behavioral 

analysis, linguistic 

anomaly detection, user 

education [79], [125]. 

Fake App Storefronts App store content 

dynamically 

adapting based on 

reviewer feedback 

to evade detection. 

Continuous red-teaming 

and adversarial testing 

of review systems, 

multimodal cross-

validation, proactive 

content monitoring [21], 

[236]. 

Deepfakes & Synthetic 

Media 

Highly realistic fake 

videos/audio for 

AI-powered media 

forensics, content 

provenance tracking 
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impersonation or 

misinformation. 

(watermarking), user 

verification methods 

[77], [117]. 

Automated 

Vulnerability 

Exploitation 

AI systems 

discovering and 

exploiting software 

vulnerabilities at 

scale. 

Proactive AI-assisted 

vulnerability research, 

bug bounty programs, 

automated patch 

generation [19], [239]. 

 

 

E. Global Compliance Template Evolution 

The global digital regulatory landscape is becoming 

increasingly fragmented and complex, with new privacy, safety, 

and content governance laws emerging frequently across different 

jurisdictions (e.g., DSA [185], EU AI Act [48]) [10], [182]. This 

dynamic environment presents a significant challenge for platforms 

operating globally, as compliance requirements are not static and 

often vary considerably by region. Future platforms will need to 

develop sophisticated capabilities to manage this evolving 

regulatory complexity, including: 

Regulatory "diff engines" to detect and adapt to legal 

changes in real time: Platforms will require AI-powered systems 

that can continuously monitor new legislation and amendments, 

automatically identify changes relevant to platform operations, and 

"diff" these changes against existing policies and compliance 

frameworks. This enables rapid adaptation and reduces the lag 

between legal enactment and platform enforcement [182], [187], 

[241]. 

LLMs capable of automatically mapping app behaviors to 

new compliance templates without full retraining: Instead of 

requiring extensive re-engineering for every new regulation, LLMs 

should be capable of interpreting new legal texts and dynamically 

re-mapping app functionalities or data flows to ensure compliance. 

Developing common standards, data models, and API interfaces for 

sharing compliance-relevant information (e.g., privacy policy 

elements, data flows, moderation decisions) between platforms and 

across jurisdictions would minimize compliance burden and foster 

a more harmonized global regulatory environment [242], [243]. 

This requires significant international collaboration. This could 

involve few-shot or zero-shot learning approaches on regulatory 

changes [26], [186]. 

Global interoperability frameworks for app review aligned 

to multi-region standards: Developing common standards, data 

models, and API interfaces for sharing compliance-relevant 

information (e.g., privacy policy elements, data flows, moderation 

decisions) between platforms and across jurisdictions would 

minimize compliance burden and foster a more harmonized global 

regulatory environment [242], [243]. This requires significant 

international collaboration. 

AI-powered compliance dashboards and audit trails: 

Platforms will need sophisticated systems to generate real-time 

compliance reports and maintain comprehensive audit trails for AI-

driven enforcement decisions, facilitating regulatory oversight and 

demonstrating accountability [139], [188]. 

This area will be vital not only to minimize developer burden 

by providing clear, up-to-date compliance guidance but also to 

maximize cross-market scalability for platforms, ensuring they can 

operate globally without constant, labor-intensive legal re-

evaluations [156], [49]. 

 

VIII. LIMITATIONS AND FUTURE WORK 

Despite the immense promise and demonstrable gains of LLMs 

in safeguarding platform integrity, several significant limitations 

and open challenges persist that warrant dedicated future work and 

research. Acknowledging these limitations is crucial for responsible 

deployment and for guiding the next generation of AI safety 

innovation. 

False Positives, Bias, and Ethical Considerations: LLMs, like 

all machine learning models, are susceptible to generating false 

positives (incorrectly flagging legitimate content or apps) [35], 

[154], which can lead to developer frustration, reduced trust, and 

unnecessary operational costs [149]. Crucially, LLMs, being trained 

on vast datasets, can inadvertently perpetuate or amplify existing 

societal biases. When applied to content moderation or developer 

risk scoring, this could lead to unfair or discriminatory outcomes 

across different languages, cultural contexts, or user demographics. 

Beyond general bias, specific attention must be paid to how LLM-

powered moderation and risk-scoring systems might 

disproportionately impact various racial and ethnic groups or other 

protected characteristics. Studies have shown that models trained 

on imbalanced datasets can exhibit disparate performance across 

different demographics, leading to higher false positive rates for 

certain linguistic styles or cultural contexts, or misinterpreting 

dialectal nuances as policy violations [255]. This can result in unfair 

moderation outcomes, restricted access to platform features, or even 

economic disadvantages for developers and users from 

marginalized communities. 

For example, research has indicated that AI-powered content 

moderation systems, when trained on imbalanced or non-

representative datasets, can exhibit disparate impact across 

demographic lines. Studies have shown that models may 

misinterpret dialectal nuances or cultural contexts, leading to higher 

false positive rates for certain linguistic styles or content from 

specific communities [255], [256]. This can result in a 

disproportionate burden of review and appeals for these groups, 

potentially leading to unfair content removals or restricted platform 

access. While specific quantitative disparities in LLM-driven 

platform integrity systems for racial and ethnic groups are often 

proprietary, the documented challenges in broader NLP fairness 

research underscore the critical need for granular, transparent 

auditing and the development of benchmarks that specifically assess 

equitable performance across diverse demographic and linguistic 

cohorts [257], [258], [259]. Such rigorous evaluation is essential to 

ensure that AI-driven enforcement is applied fairly and does not 

inadvertently disadvantage any user group. 

Developing robust bias detection, mitigation strategies (e.g., 

debiasing techniques during training and inference, diverse and 

representative training data collection), and ensuring equitable 

enforcement are critical ethical imperatives for trustworthy AI 

deployment. Implementing specific fairness metrics, such as 

demographic parity, equalized odds, or individual fairness, 

alongside traditional accuracy metrics, is essential to systematically 

audit and address these disparities [257], [258]. Furthermore, 
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frameworks like Aequitas or Fairlearn can be integrated into the 

LLM-DA stack to provide structured bias detection and mitigation 

capabilities [260]. 

Beyond data bias, the widespread deployment of LLMs in 

content moderation raises crucial ethical questions regarding 

freedom of expression, due process, and accountability. Platforms 

must navigate the delicate balance between ensuring safety and 

avoiding arbitrary censorship or undue restrictions on legitimate 

content. The risk of "chilling effects," where users self-censor 

legitimate expression due to fear of automated moderation, is a 

significant concern [256]. Furthermore, establishing clear lines of 

accountability for erroneous AI-driven decisions—whether leading 

to false removals or allowing harmful content—is paramount for 

maintaining user and developer trust and ensuring fair governance. 

Providing clear avenues for redress and human appeal for AI-driven 

decisions is an ethical imperative [191]. 

Future work must therefore prioritize not only detection and 

mitigation but also proactive strategies like diverse data collection, 

fairness metrics, and regular bias audits to ensure equitable 

enforcement, alongside robust bias detection, mitigation, and 

explainability techniques for AI models used in trust and safety 

[254], [261]. 

Data Privacy and Confidentiality: While LLMs can enhance 

privacy-preserving analysis (e.g., on-device models [157]), server-

side LLMs used for training or inference on sensitive data still 

require meticulous Personally Identifiable Information (PII) 

masking, anonymization, and secure handling to prevent data 

leakage or misuse [158], [251]. Balancing the need for rich training 

data with strict privacy requirements remains a complex challenge. 

Explainability Gaps: As highlighted previously, current LLMs 

often function as "black boxes," failing to provide transparent 

rationales behind complex moderation decisions [46], [233]. This 

lack of interpretability hinders appeals processes, complicates 

regulatory audits, and erodes trust. Future research into causal 

inference, saliency mapping, and natural language explanations for 

AI decisions is paramount [234], [254]. 

Model Drift and Adversarial Robustness: Without 

continuous monitoring and robust retraining, LLM-based models 

can experience model drift, becoming outdated as abuse tactics 

evolve or as the underlying data distribution shifts [116], [200]. 

Moreover, these models are vulnerable to adversarial attacks (e.g., 

prompt injection, data poisoning), where malicious actors 

intentionally craft inputs to bypass or manipulate AI defenses [32], 

[114]. Future work must emphasize building more resilient and 

adaptively learning AI systems [262], [263]. 

Crucially, the very LLM-powered defensive systems discussed 

are themselves targets for sophisticated adversarial attacks. 

Malicious actors may employ techniques like prompt injection to 

bypass LLM-driven moderation, or subtly poison the training data 

of defense models to degrade their efficacy over time. Robust 

defense mechanisms against these 'AI-on-AI' attacks, including 

adversarial training and continuous monitoring for model drift, are 

paramount for maintaining the integrity of these protective systems. 

Broader Ethical Considerations: Beyond data bias, the 

widespread deployment of LLMs in content moderation raises 

crucial ethical questions regarding freedom of expression, due 

process, and accountability. Platforms must navigate the delicate 

balance between ensuring safety and avoiding arbitrary censorship 

or undue restrictions on legitimate content. Furthermore, 

establishing clear lines of accountability for erroneous AI-driven 

decisions—whether leading to false removals or allowing harmful 

content—is paramount for maintaining user and developer trust and 

ensuring fair governance. 

Cross-Jurisdictional Enforcement and Harmonization: 

Differences in regional regulations (e.g., nuanced definitions of 

harmful content, varying consent requirements) remain difficult to 

encode uniformly and enforce consistently across global platforms 

[10], [182]. Achieving genuine cross-jurisdictional 

harmonization of AI governance principles and policy templates 

is a significant, ongoing challenge that requires international 

collaboration [242], [243]. 

Resource Intensity: Training and deploying large-scale LLMs, 

especially multimodal models, can be incredibly resource-

intensive, requiring significant computational power, energy, and 

data storage [153], [264]. Real-time processing of billions of 

interactions and vast codebases demands substantial hardware 

resources, specialized acceleration, and optimized inference 

techniques. This presents a significant barrier for smaller platforms 

or startups, necessitating future research into democratizing access 

through more resource-efficient open-source LLMs, optimized 

inference-as-a-service models, or shared industry-wide threat 

intelligence platforms that reduce individual compute burdens. 

Addressing these practical scalability constraints and managing 

associated operational costs will be critical for widespread adoption 

and equitable access to these technologies. Research into more 

efficient model architectures, sparse models, and optimized 

inference techniques is critical [151], [152]. 

Future research into more efficient model architectures (e.g., 

sparse models, Mixture-of-Experts), advanced quantization, and 

optimized inference techniques is critical to reduce this barrier 

[151], [152]. Furthermore, solutions like optimized inference-as-a-

service models from cloud providers (e.g., AWS, GCP, Azure), the 

development of more resource-efficient open-source LLMs 

tailored for safety tasks, and the expansion of shared industry-

wide threat intelligence platforms (like Google's App Defense 

Alliance [43]) can help democratize access to these critical 

capabilities, reducing individual compute burdens and fostering 

more equitable access to cutting-edge AI safety technologies [265], 

[230]. Addressing these practical scalability constraints and 

managing associated operational costs will be critical for 

widespread adoption and equitable access to these technologies 

across the digital ecosystem. 

Research on Hybrid Human-AI Review Loops with 

Transparent Escalation Paths: Further optimizing human-in-the-

loop systems to leverage the strengths of both human judgment and 

AI efficiency, while ensuring clear, auditable, and transparent 

escalation paths for complex or contested decisions [174], [175], 

[210]. 

Expanded Educational Tools: Creating comprehensive 

educational tools and frameworks—perhaps analogous to 

CloudLab-based SDN security labs [211]—to train developers and 

safety professionals on responsible LLM usage, threat modeling, 



33 

 

and advanced abuse detection strategies [212], [266]. This fosters a 

more security-aware ecosystem from the ground up. 

Multi-Agent Review Systems: Developing and evaluating 

architectures that combine multiple specialized LLMs or other AI 

models (e.g., rule-based systems, statistical classifiers, knowledge 

graphs) into a collaborative multi-agent system, potentially 

leveraging ensemble methods for improved robustness, accuracy, 

and comprehensive coverage of diverse threat types [213], [267]. 

Differential Privacy and Federated Fine-tuning for Safe, 

User-Level Customization: Further advancing privacy-enhancing 

technologies to enable personalized AI safety features and 

collaborative model training across decentralized data sources 

without compromising individual user privacy [47], [157], [251]. 

Standardization of LLM Safety Benchmarks for Platform 

Governance: Establishing universally accepted, robust 

benchmarks and metrics for evaluating the safety, fairness, and 

effectiveness of LLMs in content moderation and review contexts 

would drive accountability, promote best practices, and facilitate 

independent audits across the industry [189], [214], [268]. This 

would move beyond simple accuracy to include metrics for bias, 

robustness, and interpretability. 

Proactive Regulatory Sandboxes and Policy-as-Code 

Initiatives: Collaborative efforts between industry, academia, and 

regulators to create "regulatory sandboxes" for testing AI safety 

solutions and to develop "policy-as-code" frameworks that enable 

dynamic, machine-readable legal compliance templates [182], 

[241]. 

 

IX. STRATEGIC LANDSCAPE OF THE LLM ECOSYSTEM: 

INFRASTRUCTURE, CUSTOMIZATION, AND GOVERNANCE 

LAYERS 

The advent of Large Language Models has ushered in a 

transformative era in artificial intelligence, rapidly reshaping 

industries and creating unprecedented opportunities for automation, 

content generation, and intelligent assistance. This profound 

technological shift has, in parallel, catalyzed the emergence of a 

dynamic and rapidly expanding ecosystem of companies and 

technologies dedicated to supporting LLM deployment, 

orchestration, evaluation, and integration [269], [270]. While 

foundational model research labs (e.g., OpenAI, Anthropic, Meta) 

continue to drive core advancements, the effective and responsible 

operationalization of Generative AI across diverse industries now 

critically depends on a broader landscape of specialized 

infrastructure providers, sophisticated fine-tuning services, 

intelligent routing solutions, and robust trust-layer platforms [271]. 

This section provides a structured analysis of this evolving LLM 

ecosystem, including a comprehensive categorization of key 

players, an identification of critical capability gaps, an examination 

of service overlaps, and a mapping to strategic national priorities for 

AI safety and governance. 

A. Landscape of LLM Infrastructure and Service Providers 

This layer forms the bedrock of the LLM ecosystem, 

comprising companies that develop, train, and often host the large-

scale neural networks that serve as the foundation for generative AI 

applications. These organizations push the boundaries of AI 

capabilities, focusing on advanced architectures, multi-modal 

integration, and improved reasoning. Their offerings, whether via 

APIs, direct access, or open-source releases, profoundly shape the 

capabilities available to downstream developers and enterprises 

[272]. 

A.1. FOUNDATIONAL MODEL DEVELOPERS 

This segment features companies at the forefront of LLM 

innovation, designing and training the powerful base models. These 

organizations are valued in the multi-billions, reflecting immense 

investment and perceived market potential. Their revenue models 

are primarily API-based, democratizing access to powerful AI 

capabilities for developers and enterprises [273], [274]. Tech giants 

like Google DeepMind and Meta also actively contribute, with Meta 

notably championing open-source LLMs like LLaMA, fostering a 

broader AI ecosystem [275], [276]. The rapid emergence of new 

players, such as Mistral, further highlights the dynamic nature of 

this segment and the potential for disruptive innovation from 

focused teams [277]. See Table 20 for a comparison of foundational 

model developers and their key offerings. 

Table 20. Foundational Model Developers 

Company Founded 
Valuation 

(Illustrative) 

Revenue 

Model 
Clients 

Key 

Models/Focus 

OpenAI 2015 

~$80B - 

$100B 

(2024) [274] 

API usage, 

subscriptions 

Developers, 

enterprises, 

consumers 

GPT-4, 

ChatGPT, 

DALL-E 

Anthropic 2021 

~$18B - 

$20B (2024) 

[278] 

Claude API 

usage, 

enterprise 

licensing 

Enterprises, 

Developers, 

Nonprofits 

Claude family 

Cohere 2019 
~$3B - $5B 

(2024) [279] 

LLM APIs, 

embedding 

services 

Enterprises 

(e.g., 

Spotify, 

Oracle) 

Command, 

Embed, 

Rerank 

Google 

DeepMind 
2010 

(Alphabet 

division) 

LLM 

R&amp;D, 

API via 

Gemini 

(Google) 

Google 

product 

orgs, 

researchers 

Gemini, 

AlphaFold 

Meta AI 2004 
(Public 

company) 

Open-source 

LLaMA 

LLMs, AI 

infra 

Open-

source AI 

ecosystem 

LLaMA 

Mistral AI 2023 
~$6B (2024) 

[277] 

Open-source 

LLMs, 

hosted 

inference 

APIs 

Developers, 

research 

labs 

Mistral, 

Mixtral 

AI21 Labs 2017 
~$1.4B 

(2023) [280] 

LLM APIs, 

custom 

integrations 

Enterprises, 

NLP 

startups 

Jurassic 

models 

Note: Valuations are illustrative and subject to rapid change. 

They represent publicly reported figures around late 2023/early 

2024. 

A.2. CORE AI INFRASTRUCTURE & CLOUD PROVIDERS 

The immense computational demands of training and deploying 

LLMs necessitate specialized hardware and robust cloud 

infrastructure [281]. This segment includes major public cloud 

providers offering scalable GPU instances and AI-optimized 

services, as well as companies focused specifically on providing 

high-performance GPU cloud infrastructure. Their services are 

critical for handling the massive datasets and complex computations 

inherent in LLM operations, emphasizing efficiency, sustainability, 

and parameter optimization [281], [282]. The consistent partnership 

with NVIDIA across these platforms underscores NVIDIA's 

indispensable position as the leading hardware provider for AI 
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[283]. A summary of major infrastructure and cloud providers is 

shown in Table 21. 

Table 21. Core AI Infrastructure and Hosting Providers 

Company Founded Revenue 

Model 

Clients Key 

Offerings 

AWS 2006 Cloud 

computing 

services 

(pay-as-

you-go) 

Startups, 

enterprises, 

government 

EC2 (GPU 

instances), 

Sagemaker 

Google 

Cloud 

2008 Cloud 

computing 

services 

(pay-as-

you-go) 

Enterprises, 

developers, 

education 

Compute 

Engine 

(GPUs), 

Vertex AI 

Microsoft 

Azure 

2010 Cloud 

computing 

services 

(pay-as-

you-go) 

Enterprises, 

developers, 

government 

Azure AI, 

OpenAI 

Service 

CoreWeave 2017 GPU 

cloud 

services 

AI startups, 

model labs, 

research 

teams 

High-

performance 

GPU cloud 

Lambda 

Labs 

2012 GPU 

cloud & 

hardware 

sales 

ML startups, 

Universities, 

AI teams 

GPU cloud, 

Deep 

Learning 

Workstations 

Oracle 

Cloud 

2016 Cloud 

computing 

services 

Enterprises, 

government 

High-

performance 

compute, AI 

services 

Tencent 

Cloud 

2013 Cloud 

computing 

services 

Enterprises, 

developers 

AI 

computing, 

LLM APIs 

 

A.3. LLM FINE-TUNING & CUSTOMIZATION SPECIALISTS 

While foundational models offer broad capabilities, many real-

world applications require models tailored to specific domains, 

datasets, or performance objectives. Fine-tuning specialists provide 

services ranging from data labeling and annotation—crucial for 

high-quality supervised fine-tuning and Reinforcement Learning 

from Human Feedback (RLHF)—to custom model development 

and deployment. These companies are instrumental in adapting 

general LLMs for niche enterprise use cases, often in regulated 

industries like BFSI (Banking, Financial Services, and Insurance) 

and healthcare [284], [285]. Table 22 summarizes companies 

specializing in LLM fine-tuning and custom deployments. 

Table 22. LLM Fine-Tuning and Customization Specialists 

Company Founded Key Services Clients Focus 

Industries 

Scale AI 2016 Data labeling, 

evals, LLM 

pipelines 

OpenAI, 

Meta, U.S. 

Government, 

Enterprises 

Data 

annotation, 

ML model 

evaluation 

Labelbox 2018 Data labeling 

& annotation 

SaaS 

Enterprises, 

ML teams 

Data for ML 

training 

Snorkel AI 2019 Programmatic 

data labeling 

platform 

Enterprise 

ML, 

regulated 

industries 

Data-centric 

AI 

Turing 2018 B2B services 

(fine-tuning, 

deployments, 

evals) 

Enterprises, 

Fintech, 

Healthcare, 

Government 

Custom 

LLM 

solutions, 

talent 

LeewayHertz 2007 Custom 

AI/LLM 

development 

services 

Healthcare, 

legal, 

finance, 

logistics 

Custom AI 

development 

Bacancy 

Technology 

2011 Custom LLM 

solutions and 

chatbot 

integrations 

BFSI, e-

commerce, 

logistics 

firms 

Custom 

LLM 

development 

 

A.4. LLM TOOLING & VECTOR DATABASE PROVIDERS 

The efficient development, deployment, and monitoring of 

LLM-powered applications require a sophisticated set of tools. This 

category includes platforms for ML experiment tracking, MLOps, 

and, increasingly, vector databases [286]. Vector databases are 

essential for Retrieval-Augmented Generation (RAG) architectures, 

enabling LLMs to access and synthesize information from vast, 

domain-specific knowledge bases, thereby reducing hallucinations 

and improving factual accuracy [287], [288]. The market for LLM-

powered tools is projected to see exponential growth, driven by 

demand for automation and personalization [289], [290]. Key 

players in LLM tooling and vector infrastructure are listed in Table 

23. 

Table 23. LLM Tooling and Vector Infrastructure Providers 

Company Founded Key 

Offerings 

Primary 

Use Case 

Revenue 

Model 

Weights & 

Biases 

2017 ML tooling 

SaaS 

subscriptions 

ML 

experiment 

tracking, 

MLOps 

SaaS 

subscriptions 

Pinecone 2019 Vector 

database 

SaaS 

RAG, 

semantic 

search 

Usage-based 

SaaS 

Hugging 

Face 

2016 Model 

hosting, 

APIs, Pro 

features 

Open-source 

ML models, 

collaboration 

APIs, Pro 

features 

Chroma 2022 Open-source 

vector 

database 

RAG, 

embedding 

storage 

Open-

source, 

commercial 

Comet 

ML 

2017 ML 

experiment 

tracking 

SaaS 

ML 

experiment 

tracking, 

MLOps 

SaaS 

subscriptions 

MLflow 2018 Open-source 

ML platform 

(Databricks) 

MLOps, 

experiment 

tracking, 

model 

management 

Open-

source, SaaS 

Milvus 2019 Open-source 

vector 

database 

Vector 

search, RAG 

Open-

source, 

commercial 

Neptune.ai 2017 Experiment 

tracking and 

metadata 

management 

ML ops, 

experiment 

tracking 

SaaS 

subscriptions 

Weaviate 2019 Open-source 

vector 

search + 

managed 

cloud 

RAG, 

semantic 

search 

Open-

source, 

managed 

cloud 
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A.5. LLM GOVERNANCE, ORCHESTRATION, AND TRUST 

PLATFORMS 

An emerging and critical segment of the LLM ecosystem 

comprises platforms dedicated to providing holistic governance, 

orchestration, and trust layers for LLM deployments. These 

platforms aim to solve the critical challenge of responsibly scaling 

GenAI by bridging the fragmentation found across specialized 

tools, offering integrated solutions for managing the safety, 

compliance, explainability, and resilience of AI systems, 

particularly in regulated, high-stakes industries. They are designed 

to operate as infrastructure-agnostic orchestration layers, providing 

comprehensive capabilities for model interoperability, policy 

enforcement, observability, and user-facing transparency [271].  

With the rapid advancement of foundational models, the need 

for post-deployment infrastructure focused on responsible AI—

including safety, human oversight, and governance—has become 

increasingly urgent. As recent analyses suggest, no single provider 

currently addresses the full spectrum of emerging requirements, 

including robust model interoperability, forensic oversight, and 

comprehensive retrieval-augmented generation (RAG) evaluation 

[291]. To operationalize this vision, we propose Virelya: an 

envisioned framework and implementation blueprint for high-

stakes domains like platform integrity, financial trust, and 

healthcare diagnostics. As illustrated in Fig. 28, a platform like 

Virelya exemplify emerging solutions designed to bridge this gap 

by offering a unified control plane across heterogeneous LLM 

deployments. These systems support explainability and 

transparency for high-risk use cases, align with standards such as 

the NIST AI Risk Management Framework (RMF), and incorporate 

capabilities for red teaming, bias auditing, biomedical guardrails, 

and granular audit trail generation for compliance tracking. 

In addition, they enable advanced multi-LLM orchestration—

including cost-aware, policy-driven model switching (akin to a 

“reverse API gateway”)—agentic memory and planning for 

sophisticated AI agents, and rigorous RAG evaluation to track 

precision, hallucination risk, and source quality. Integrated Human-

in-the-Loop (HITL) oversight and user-facing trust layers further 

enhance transparency by overlaying LLM outputs with confidence 

scores and source-grounded explanations [271]. These features 

address growing regulatory demands and enterprise expectations 

for trustworthy AI deployments. Such architectures increasingly 

align with public-sector funding priorities, particularly in regulated 

domains such as healthcare, defense, and finance. 
 

 

Fig. 28. Representative functional architecture of an integrated LLM 

orchestration, trust, and governance platform for an envisioned platform 

(Virelya). The diagram delineates key capabilities across three concentric 

domains: foundational LLM infrastructure (e.g., fine-tuning, transparency), 

core operational control (e.g., routing, audit, compliance), and emerging 

responsible AI features (e.g., bias auditing, biomedical guardrails, agent 

memory, and RAG evaluation). 

B. Analyzing Ecosystem Dynamics: Overlaps and Gaps 

While the burgeoning LLM ecosystem offers a rich array of 

specialized services, a detailed analysis reveals distinct patterns of 

service overlap and, more critically, significant capability gaps, 

particularly concerning holistic AI governance and trustworthiness 

[292]. The architectural fragmentation, siloed ecosystems, and 

challenges in data quality within the LLM ecosystem often impede 

scalability, interoperability, and resource efficiency [293], [294]. 

B.1. SPECIALIZATION VS. VERTICAL INTEGRATION 

Current market dynamics largely favor specialization, with 

most companies focusing on a narrow band of services within the 

LLM stack. This allows for deep expertise and rapid innovation 

within specific niches, from foundational model development to 

data labeling or vector search. For example, model labs like OpenAI 

and Anthropic prioritize core model development and API access, 

while specialized fine-tuning vendors such as Turing concentrate on 

RLHF pipelines [273], [284]. This specialization, while fostering 

rapid development in individual components, inadvertently creates 

a fragmented landscape. It necessitates that enterprises stitching 

together LLM solutions integrate multiple disparate tools and 

services, leading to increased complexity, potential compatibility 

issues, and a lack of a unified governance layer [295]. 

B.2. THE EMERGENCE OF HOLISTIC PLATFORM DEFICIENCIES 

A critical observation from the current landscape is the 

widespread absence of truly holistic, governable LLM platforms 

that address the end-to-end lifecycle of trustworthy AI deployment, 

especially in safety-critical or heavily regulated environments. As 

widely noted, foundational model providers often "do not provide 

open red teaming or compliance interfaces" [291]. Similarly, 

specialized tooling vendors often "lack UX trust mechanisms or 

multi-model routing" [291]. This fragmentation leaves significant 

blind spots in areas crucial for responsible AI, including: 

Comprehensive Risk Mitigation: The absence of integrated 

solutions makes it challenging to consistently detect and mitigate 

emerging risk vectors such as prompt injection, hallucination, data 

leakage, and compliance failures across the entire LLM application 

stack [296]. 

Unified Governance and Compliance: Managing LLM 

compliance with evolving regulations (e.g., GDPR, CCPA, EU AI 

Act) becomes a complex, manual undertaking when governance 

tools are not integrated across different model providers, tooling, 

and deployment environments [297], [298]. Establishing robust AI 

governance is not merely an option but a business imperative for 

organizations [299]. Industry adoption of comprehensive 

governance frameworks is still nascent, but increasing [300]. 

Transparent Explainability and Auditability: Achieving full 

visibility and interpretability into LLM decisions is difficult when 

observability and explainability tools are siloed from core model 
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operations [301], [302]. Platforms like Virelya are emerging to 

directly address these deficiencies by providing an integrated 

orchestration, trust, and governance layer that spans across these 

disparate components [271]. 

These patterns are visualized in Fig. 29, which shows the 

overlap of companies across the core functional layers of the LLM 

ecosystem. 

 

 

Fig. 29. LLM Company Capability Overlap Across Core Platform Areas. 

Most companies specialize in only 1–2 areas, revealing a lack of full-stack 

capability integration. Y-axis, Service Categories, top to bottom: Fine-Tuning, 

Infra (compute resources (cloud compute, storage, networking)), Evaluation, 

Tooling, platform-level Infrastructure (like container orchestration 

(Kubernetes), deployment frameworks, or scalable microservices), Model 

Provider/LM Infrastructure (Specific to companies offering language model–

related infrastructure, such as specialized compute clusters, APIs for LLMs, 

or even full-fledged model-serving platforms.). X-axis, companies, left to right: 

1. Virelya, 2. Cohere, 3. Databricks, 4. Hugging Face, 5. Together AI, 6. 

MosaicML, 7. OpenAI, 8. Scale AI, 9. SuperAnnotate, 10. Turing, 11. Palantir, 

12. Anthropic, 13. CoreWeave, 14. Comet ML, 15. Anduril, 16. Weaviate, 17. 

Snowflake, 18. Snorkel AI, 19. Runpod, 20. Neptune, 21. Nivus, 22. Meta, 23. 

MFlow, 24. Labelbox, 25. Google DeepMind, 26. Chroma, 27. Lambda Labs, 

28. AI21 Labs, 29. Mistral, 30. Weights & Biases, 31. Azumo, 32. Pinecone, 

33. Baccency Technology, 34. Microsoft Azure AI Foundry, 35. Google Cloud 

(Vertex AI), 36. AWS (Amazon Bedrock), 37. 10clouds, 38. LeewayHertz, 39. 

Codiste 

C.  Critical Pillars for Trustworthy LLM Deployment 

To address the fragmentation and deficiencies noted in the 

current LLM ecosystem, a robust platform for trustworthy LLM 

deployment must coalesce around several critical, interconnected 

capabilities. These advanced areas are essential for managing the 

inherent complexities and risks of generative AI in operational 

settings. 

C.1. GOVERNANCE AND AUDIT FRAMEWORKS 

Effective LLM governance encompasses a set of principles and 

procedures for managing LLMs throughout their lifecycle to ensure 

ethical use, regulatory compliance, and risk mitigation [297]. This 

includes robust model lifecycle management (version control, 

performance benchmarking), responsible data sourcing, strict 

access controls and role-based permissions, and continuous risk and 

compliance monitoring [297], [299]. Transparency in documenting 

a model's training data, use cases, and limitations is vital for 

detecting biases or misuse [299]. Auditability requires 

comprehensive logging of model decisions, prompt inputs, and 

outputs, ensuring traceability and accountability [301], [298].  

C.2. MULTI-LLM ORCHESTRATION AND ROUTING 

As enterprises adopt multiple LLMs (from different providers or 

open-source models) for diverse tasks, the ability to seamlessly 

orchestrate and route requests across these models becomes 

crucial. This capability includes intelligent failover mechanisms 

for resilience, load balancing for cost and performance 

optimization, and dynamic model selection based on task, cost, 

accuracy, or specific safety requirements.  

C.3. AGENTIC MEMORY AND PLANNING 

The increasing sophistication of AI agents, which leverage 

LLMs to perform complex, multi-step tasks autonomously, 

necessitates advanced memory and planning capabilities [303], 

[304]. Robust agentic memory allows LLMs to retain context and 

information across interactions, crucial as LLMs are inherently 

stateless. This includes short-term memory (for immediate context 

in conversations) and long-term memory (episodic and semantic, 

for recalling specific past events or factual knowledge across 

sessions) [303], [304], [305]. Planning modules enable them to 

break down complex goals into actionable steps, crucial for reliable 

and predictable behavior in dynamic environments.  

C.4. RETRIEVAL AUGMENTED GENERATION (RAG) 

EVALUATION AND OPTIMIZATION 

RAG architectures are fundamental for grounding LLMs 

thereby mitigating hallucinations and enhancing domain-specific 

accuracy [287]. Effective RAG implementation requires 

sophisticated evaluation methods to assess the quality of retrieval, 

relevance of context, and factual consistency of generated outputs 

[306], [307]. This includes prioritizing both retrieval metrics (e.g., 

precision@k, recall@k) and generation metrics (e.g., BLEU, 

ROUGE, context recall, context precision) [306]. Optimization 

focuses on improving latency, cost, and accuracy of the RAG 

pipeline [306].  

C.5. USER EXPERIENCE (UX) TRUST LAYERS 

Beyond technical safeguards, building trust in LLM-powered 

applications depends heavily on user experience design. Trust 

layers involve mechanisms that foster transparency (e.g., clearly 

communicating where the system gets its data or how it learns), 

provide clear explanations for AI decisions (Explainable AI - XAI), 

and offer intuitive controls for user feedback and correction [308], 

[309]. This is vital for managing user expectations and ensuring 

responsible interaction with AI systems, especially given their 

unpredictable nature and potential for hallucination [309].  

As highlighted by market analysis, while leading companies 

have begun to offer partial support in these critical areas, "no single 

platform currently addresses the full stack of post-model needs" 

[291]. Fig. 30 illustrates this further by showing which companies 

are active across emerging capability areas such as red teaming, 

trust layers, and RAG evaluation. This confirms that emerging risk 

vectors in GenAI—such as prompt injection, hallucination, and 

compliance failure—are not consistently mitigated across the 

existing ecosystem, necessitating a more integrated approach like 

that offered by Virelya. 
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Fig. 30. Overlap of Companies Across Strategic LLM Enablement Areas. 

Emerging safety and trust capabilities are concentrated in only a few 

platforms, exposing critical deployment risks. Y-axis, advanced capability 

area, top to bottom: Governance & Audit, Multi-LLM Routing, Agent Memory 

& Planning, RAG Evaluation, LLM UX Trust Layer. X-axis, names of 

companies, left to right: 1. Virelya, 2. CalypsoAI, 3. Credo AI, 4. Portkey AI 

Gateway, 5. Kong AI Gateway, 6. Turing, 7. AgentFlow, 8. RAGAS, 9. Arize 

Phoenix, 10. Salesforce Einstein Trust Layer. 

 

D. Aligning with National AI Priorities and Research 

Frontiers 

The identified capability gaps and the need for comprehensive 

LLM governance align closely with national and international 

priorities for responsible AI development and deployment. Public 

sector initiatives from leading research and standardization bodies 

emphasize the necessity for robust, trustworthy, and ethical AI 

systems.  

D.1. CORE RESEARCH & DEVELOPMENT GAPS FOR 

RESPONSIBLE AI 

Several key areas require intensive academic and applied 

research focus to advance the state of LLM safety and 

trustworthiness: 

Explainability & Transparency (XAI frameworks, 

rationalization, token attribution): A persistent challenge is the 

"black box" nature of LLMs [310], [311]. Future research needs to 

develop more robust XAI frameworks that can provide human-

interpretable rationales for LLM outputs, attribute specific tokens 

to input influences, and trace decision-making processes [301], 

[310], [311]. Tools like Lunary, Langsmith LLM Observability, 

Portkey, Helicone, TruLens, Phoenix (by Arize), Traceloop 

OpenLLMetry, and Datadog are emerging to address LLM 

observability, including interpretability [301].  

Bias Auditing & Equity Monitoring (bias detection in 

training, retrieval, and output): LLMs, trained on vast datasets, 

can inadvertently learn and perpetuate societal biases [312], [313]. 

Research must focus on developing advanced methodologies for 

bias identification, quantification, and mitigation (e.g., 

counterfactual data augmentation, adversarial training, algorithmic 

adjustments) across diverse demographic and cultural contexts 

[312], [313], [259]. This involves rigorous testing using bias 

benchmarks and diverse test prompts, coupled with human 

evaluation and fairness metrics [313]. Tools like IBM's AI Fairness 

360, Accenture's Fairness Tool, Google's What-If Tool, and 

Aequitas provide frameworks for this [314]. Similarly, platforms 

are being developed to provide Bias Auditing & Equity 

Monitoring capabilities for fair and accountable systems, with 

Virelya's platform offering an example of such features [271]. 

Threat Simulation & Red Teaming (jailbreak testing, 

misuse detection): As LLM defenses evolve, so do adversarial 

tactics. Red teaming involves systematically simulating attacks 

(e.g., prompt injection, sensitive information disclosure, content 

generation of harmful outputs) to identify vulnerabilities before 

deployment [315], [316]. This proactive approach helps build 

resilience and ensures regulatory alignment [316]. Open-source 

tools like DeepTeam incorporate advanced techniques such as 

jailbreaking and prompt injections to find vulnerabilities like bias, 

PII leakage, and misinformation, supporting compliance with 

standards like OWASP Top 10 for LLMs and NIST AI RMF [317], 

[318].  

D.2. DOMAIN-SPECIFIC GUARDRAILS AND COMPLIANCE 

Beyond general AI safety, specific domains require tailored 

guardrails and compliance mechanisms: 

Biomedical Guardrails (domain-specific hallucination 

filters, PubMed RAG QA): In sensitive fields like healthcare, 

LLM hallucinations can have severe consequences, leading to 

inaccurate information impacting clinical decisions and patient 

safety [319], [320]. Research is crucial for developing domain-

specific hallucination detection and mitigation, ensuring LLMs 

provide factually consistent information, and leveraging RAG with 

authoritative sources like PubMed for question answering [319], 

[320]. Solutions aimed at this challenge, for example, the 

Biomedical RAG Guardrails included in platforms like Virelya's, 

are designed for safe deployment in healthcare and research [271]. 

NIST AI RMF Compliance Modules (standards-based AI 

logging and control layers): The National Institute of Standards 

and Technology (NIST) has established the AI Risk Management 

Framework (AI RMF) to guide organizations in managing AI risks 

across the lifecycle [321], [322]. Developing tools and modules that 

facilitate automated compliance with NIST AI RMF, including 

centralized risk management, flexible customization, and 

continuous monitoring, is a key priority for enabling trustworthy AI 

adoption in both public and private sectors [321], [323]. Companies 

like Vanta offer solutions aligned with NIST AI RMF for 

continuous risk assessment and compliance [323]. Further 

supporting such goals, other platforms also explicitly offer 

Standards Alignment (NIST AI RMF) and policy traceability for 

AI oversight and assurance, with Virelya providing an example of 

these capabilities [271]. 

This comprehensive mapping supports the creation of new 

benchmarks, funding calls, and platform extensions that directly 

respond to the critical needs of secure, ethical, and explainable AI 

deployment at scale, bridging the gap between academic research 

and real-world implementation. 

 

 

X. THE LLM DESIGN & ASSURANCE (LLM-DA) STACK: A 

CROSS-DOMAIN BLUEPRINT FOR RESPONSIBLE AI 

INFRASTRUCTURE 

The explosive, unbridled growth of LLM-powered 

applications, agents, plugins, copilots, and autonomous workflows 
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is creating an urgent gap in standardized tools for their safe 

development, testing, deployment, and governance [324]. Just as 

various high-tech sectors have developed specialized abstraction 

layers and robust toolchains to manage escalating complexity and 

risk – from Electronic Design Automation (EDA) in 

semiconductors [325], [326], to advanced Software Quality 

Assurance (QA) frameworks in complex software development 

[327], [328], and collaborative threat intelligence platforms in 

cybersecurity [265], [329] – the generative AI era now demands a 

parallel trust-and-assurance abstraction: an LLM Design and 

Assurance (LLM-DA) stack. 

Rather than competing with foundation model providers such as 

OpenAI, Google, Anthropic, or Mistral, this envisioned stack 

operates as a horizontal infrastructure layer—serving as a 

foundational trust and compliance substrate for LLM-powered 

products and ecosystems [330]. Analogous to how EDA enabled 

Moore’s Law by accelerating chip innovation through modular, 

scalable design and verification, an LLM-DA ecosystem would 

industrialize safety, explainability, and governance across the 

rapidly evolving generative AI landscape [331]. 

A. Strategic Rationale and Market Gaps 

LLM-based systems today suffer from brittle prompt chains, 

unexplained hallucinations, uncertain legal compliance, and 

inconsistent behavior across platforms [22], [26], [103]. These 

systemic vulnerabilities often lead to unpredictable behavior, 

widespread misinformation, significant security exploits, and 

substantial regulatory fines, not just app rejections and reputational 

harm [32], [74], [182]. Current mitigation approaches remain 

bespoke, manual, and fragmented, proving unsustainable at the 

accelerating pace of AI innovation [73], [128]. What’s missing is a 

formal design-time and runtime stack that standardizes verification, 

simulation, compliance, and rollout for LLM applications—just as 

EDA did for logic gates and transistors [332]. This unified approach 

is critical to address common pain points across the AI development 

lifecycle, echoing lessons from robust software testing and cloud-

native observability practices [327], [333]. 

This proposed stack serves as a neutral, enabling trust layer 

across marketplaces, apps, and enterprise AI systems, supporting 

the entire lifecycle of LLM-based deployments with the following 

core capabilities: 

LLM Blueprinting: Compose prompt flows, adapters, and tools 

into verifiable "LLM circuits" to enable compositional safety and 

predictable behavior at scale [334], [335]. 

Proactive Red-Team Simulation: Systematically simulate 

unsafe outputs, edge-case prompts, and adversarial abuse to identify 

vulnerabilities before deployment, drawing parallels with rigorous 

software penetration testing and cybersecurity red-teaming [228], 

[336]. 

Automated Compliance-as-Code Verification: Validate LLM 

outputs, data flows, and behaviors against evolving global 

regulations like GDPR, CCPA, and the EU AI Act, leveraging 

formalized legal-to-code frameworks for verifiable adherence and 

automated reporting [156], [186], [241]. 

Contextual Explainability Audits: Trace hallucinations, log 

model decisions, and generate AI-driven explanations and 

visualizations, providing transparent, actionable insights for human 

oversight and regulatory scrutiny [46], [234], [254]. 

Marketplace Alignment Signoff: Provide platform-specific 

validation of LLM-powered plugins, agents, and copilots against 

unique marketplace safety and policy requirements, ensuring 

seamless and compliant publication [56], [57]. 

Secure Real-Time Runtime Inference & Monitoring: Host 

LLMs with robust sandboxing, content watermarking capabilities, 

and dynamic anomaly detection to preempt and mitigate misuse in 

production environments, similar to advanced observability and 

Security Information and Event Management (SIEM) systems in 

distributed computing [117], [126], [333], [337]. 

These components form a foundational infrastructure essential 

for scalable, safe, and trustworthy AI innovation. 

B. Addressing Adoption Hurdles and Fostering 

Standardization 

While the vision for an LLM-DA stack is compelling, its 

successful adoption hinges on overcoming significant practical 

challenges inherent in establishing new industry-wide standards and 

infrastructures. These include: 

Standardization Complexity: Achieving consensus on 

common formats, APIs, and verification methodologies across 

diverse industry players (foundation model providers, platform 

operators, app developers, regulators) is a monumental task. This 

requires strong leadership from consortia, open-source initiatives, 

and potentially regulatory bodies to define and enforce 

interoperability standards. Drawing lessons from the evolution of 

web standards (W3C) or hardware design standards (IEEE) can 

provide valuable insights [338], [339]. 

Incentivizing Data Sharing: Many of the benefits of an LLM-

DA stack, particularly in threat intelligence and bias mitigation, 

rely on access to diverse, real-world data. Companies are often 

reluctant to share proprietary or sensitive data due to competitive 

concerns or privacy regulations. Mechanisms like federated 

learning on private datasets, secure multi-party computation for 

aggregated insights, and carefully designed anonymization 

techniques will be crucial to enable collaborative security and 

fairness initiatives without compromising data privacy [47], [252]. 

Initial Adoption ("Chicken-and-Egg" Problem): As with 

any new infrastructure, initial adoption can be slow if there isn't a 

critical mass of tools and users. A phased rollout, starting with 

high-impact, low-risk areas (e.g., basic code vulnerability scanning, 

or automated policy pre-checks) can demonstrate immediate value, 

encouraging broader participation. Open-sourcing key components 

of the LLM-DA stack could also accelerate community adoption 

and development [340]. 

Integration with Existing Workflows: The LLM-DA stack 

must seamlessly integrate with existing developer toolchains, 

CI/CD pipelines, and platform review processes. Complex 

integration requirements can deter adoption. Providing clear SDKs, 

plugins for popular development environments, and comprehensive 

documentation will be vital for a smooth transition. 

Economic Viability for All Stakeholders: The costs 

associated with developing, maintaining, and using LLM-DA tools 

must be balanced against the benefits for all stakeholders, including 
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smaller developers and platforms with limited resources. Exploring 

tiered service models, open-source options, and collaborative 

funding mechanisms could address this. 

Addressing these hurdles requires not only technical innovation 

but also strategic industry collaboration, clear governance models, 

and a commitment to shared responsibility for the safety and 

integrity of the digital ecosystem. The LLM-DA stack is a long-

term vision, but one that is increasingly necessary for the 

responsible scaling of AI. 

 

 

C. Target Customers and Their Integrity Needs 

The LLM-DA platform serves diverse stakeholders across the 

AI development ecosystem, addressing their unique integrity-

driven needs. Table 23 illustrates the key customer segments and 

the specific integrity requirements that an LLM-DA platform is 

designed to address. 

 

 

Table 24. Target Customers and Their Integrity-Driven Needs for an LLM 

Design & Assurance Platform 

Customer 

Segment 
Key Need 

Example 

Organizations 

AI platform 

giants 

Plugin/app vetting, 

hallucination simulation, 

platform integrity 

OpenAI, Google 

Gemini, Anthropic 

App stores & 

marketplaces 

SDK compliance, multimodal 

policy alignment, synthetic 

content detection 

Apple App Store, 

Google Play 

Enterprise 

SaaS 

vendors 

Fine-tuning safety, responsible 

deployment logging, internal 

policy enforcement 

Microsoft, 

Salesforce, SAP 

LLM app 

developers 

Trust-by-design, traceability, 

auditability, accelerated 

compliance 

Indie plugin 

developers, B2B 

SaaS startups 

 

 

D. Design Stack: LLM-DA Functional Components and 

Industry Analogues 

The architecture mirrors the modular, composable paradigm of 

chip design, where each capability has a clear analogue in the EDA 

pipeline, now adapted to generative AI. This section further 

highlights how these components draw inspiration from established 

practices across various high-tech industries. Table 25 details the 

core functional components of the LLM-DA stack, alongside their 

respective industry analogues and intended purposes. 

 

Table 25. LLM-DA Stack Components and Their Industry Analogues 

 

LLM-DA 

Capability 
Industry Analogue Purpose (Condensed) 

LLM 

Blueprinting 

HDL (e.g., 

Verilog/VHDL) 

Compose verifiable "LLM 

circuits" for compositional safety 

and predictable behavior. 

Red-Team 

Prompt 

Simulation 

Logic/fault 

simulation, 

Penetration Testing 

[336] 

Systematically identify 

vulnerabilities via adversarial 

prompting and dynamic 

interaction. 

Automated 

Compliance-

as-Code 

Verification 

DRC/LVS, 

Regulatory 

Technology 

(RegTech) [186] 

Validate LLM outputs/behaviors 

against global regulations using 

formalized legal-to-code 

frameworks. 

Explainability 

& Audit Trail 

Post-layout 

verification, 

Observability/SIEM 

[333] 

Trace hallucinations, log 

decisions, and generate 

contextual XAI justifications for 

oversight and scrutiny. 

App Store 

Readiness 

Signoff 

Tape-out, Software 

Release 

Certification 

Validate LLM-powered 

plugins/agents against 

marketplace safety and policy 

requirements for compliant 

publication. 

Secure 

Runtime 

Inference & 

Monitoring 

Secure hardware 

runtime, Runtime 

Application Self-

Protection (RASP) 

[126] 

Provide sandboxing, 

watermarking, and dynamic 

anomaly detection for secure and 

responsible operation. 

 

A high-level architectural overview of this cross-domain stack 

is illustrated in Fig. 31, synthesizing the core verification, 

simulation, compliance, and monitoring layers of the LLM-DA 

framework. 

 
Fig 31. The LLM-DA Stack: A cross-domain blueprint for scalable trust 

and assurance in LLM-based applications. Inspired by industry best 

practices from EDA, cybersecurity, software QA, and regulatory tech, the 

stack standardizes design-time and runtime integrity for plugins, agents, 

and copilots. 

 

E. Vision and Impact 

This LLM-DA stack would become the standard operating layer 

for responsible LLM development, providing essential 

infrastructure for: 
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• AI-native compliance, debugging, and alignment tools. 

• Achieving privacy-by-design and seamless on-device inference 

compatibility. 

• Enabling cross-marketplace safety, making "write once, deploy 

everywhere" a feasible reality for LLM applications. 

• Accelerating innovation with significantly lower risk and higher 

regulatory trust, leading to significant cost savings by reducing 

manual review, re-engineering efforts, and compliance-related 

liabilities. 

Quantitatively, the LLM-DA stack is envisioned to achieve 

several transformative impacts. For instance, it is projected to 

reduce the time-to-market for LLM-powered applications by an 

illustrative 30-50% by automating safety and compliance checks, 

thereby minimizing iterative rejection cycles. Furthermore, through 

proactive red-teaming and compliance-as-code verification, it aims 

to decrease the incidence of critical AI safety and regulatory 

compliance failures by a projected 40-60% in production 

environments. This foundational infrastructure is also expected to 

significantly lower the operational costs associated with manual 

audits and post-deployment incident response, potentially yielding 

efficiency gains of up to 25-35% in trust and safety operations for 

platform operators. These are preliminary estimates based on the 

observed benefits of similar automation in related fields like EDA 

and software QA, and are subject to validation through real-world 

deployment. 

As governments tighten regulation, app stores raise safety 

thresholds, and users increasingly demand accountability and 

transparency from AI systems, an LLM-DA stack will become 

indispensable [341]. By proactively building this trust foundation, 

platforms can avoid fragmentation, empower developers with 

robust tools, and scale AI responsibly and sustainably. 

To operationalize this vision, we envision Virelya actively 

prototyping APIs, simulation frameworks, and compliance 

toolchains. This work aligns with the LLM-DA vision, bridging 

academic systems research with applied generative AI engineering 

to contribute foundational infrastructure for scalable, secure, and 

trustworthy AI development. 

XI. EXTENDING THE LLM INTEGRITY FRAMEWORK TO 

CLINICAL DIAGNOSTICS 

A. Motivation: The Interpretation Gap in Diagnosis 

The diagnostic process in medicine is inherently complex, 

relying on a synthesis of diverse information, from subjective 

patient-reported symptoms and medical history to objective clinical 

signals like laboratory results and advanced imaging. This process 

is frequently time-intensive and prone to error, especially in 

dynamic environments like telehealth or early-stage disease 

evaluation [29], [342]. Diagnostic errors are a leading cause of 

patient harm, contributing to significant morbidity and mortality 

globally [30], [343], [344]. In the United States alone, an estimated 

7.4 million emergency department visits and 2.7 million 

inpatient hospitalizations are associated with diagnostic errors 

annually [343]. Factors contributing to these errors include 

cognitive biases in clinicians, information overload from 

fragmented data sources, and the subtle or atypical presentation of 

many diseases [345], [346]. Addressing this "interpretation gap"—

the challenge of accurately translating a patient's multifaceted 

presentation into a precise diagnosis—is paramount for improving 

healthcare outcomes [37]. 

Building on our prior work in human-in-the-loop (HITL) 

productivity systems [51] and advanced pattern recognition 

frameworks for complex data [52], [347], we propose extending our 

comprehensive LLM integrity and governance blueprint to a vital 

new domain: AI-assisted clinical diagnostics. This extension 

highlights how the principles developed for digital platform 

integrity can be adapted to safeguard high-stakes medical 

applications, enhancing accuracy, safety, and trustworthiness. 

Recent market analysis projects the global AI in diagnostics market 

to grow from $1.1 billion in 2023 to $16.5 billion by 2030, 

reflecting a compound annual growth rate (CAGR) of over 45% 

[348]. This rapid adoption underscores the urgent need for robust 

integrity frameworks. 

B. Multimodal Mapping: From Symptom Language to 

Imaging Biomarkers 

At the core of our proposed clinical AI framework is a 

sophisticated multimodal mapping system designed to bridge the 

semantic divide between patient narrative and objective biomedical 

data [349]. We leverage advanced Large Language Models – such 

as specialized biomedical LLMs like Med-PaLM and BioMedGPT, 

which are pre-trained on vast corpuses of clinical notes, scientific 

literature, and electronic health records (EHRs) [350], [351] – to 

convert unstructured patient-reported symptoms, medical histories, 

and clinician observations into structured, semantically rich 

diagnostic features. This transformation involves natural language 

understanding (NLU), medical entity recognition (e.g., identifying 

diseases, medications, anatomical sites), and medical concept 

normalization [352], [353]. 

These LLM-derived textual features are then precisely aligned 

with image-derived features obtained from various diagnostic 

modalities, including high-resolution MRI, CT scans, and 

innovative terahertz (THz) imaging [354], [355]. As indiccated in 

Table 26, this alignment is achieved through a contrastive learning 

framework, where the system learns to identify consistent patterns 

across different data types that correspond to specific clinical 

conditions [356], [357], [358]. Our prior work on GPU-accelerated 

image segmentation and unsupervised clustering [52], [347] plays a 

crucial role here, significantly improving the precision of feature 

extraction from complex medical images and reducing processing 

latency in real-time diagnostic workflows [359]. 

 

Table 26: Illustrative Performance Gains with Multimodal LLM 

Integration in Diagnostics  

Metric 

Category 

Traditional 

(Human-

Only/Basic 

Rule-Based) 

(Illustrative) 

LLM-

Augmented 

Multimodal 

System 

(Illustrative) 

Implied 

Improvem

ent 

Key Benefit 

Diagnostic 

Time (per case) 
60-120 minutes 

10-30 

minutes 

75-80% 

Reduction 

Faster patient 

triage, 

reduced wait 

times 
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Initial 

Diagnostic 

Accuracy 

70-80% 85-95% 
15-20% 

Increase 

Reduced 

misdiagnosis, 

improved 

patient 

outcomes 

Data Fusion 

Capability 
Limited, manual 

Seamless, 

automated 

Transforma

tive 

Holistic 

patient view, 

hidden 

pattern 

detection 

Subjective-to-

Objective 

Linkage 

Manual 

interpretation 

Automated 

semantic 

mapping 

Enhanced 

clarity 

Bridging 

clinical 

intuition with 

empirical 

data 

Note: These figures are illustrative and represent potential 

improvements based on current research trends and the capabilities 

of multimodal AI integration, not specific empirical results from a 

single deployed system. 

As shown in Fig. 32, LLM-augmented systems demonstrate 

significantly reduced diagnostic latency and improved feature 

alignment capability, reflecting the potential for multimodal AI to 

transform clinical workflows. 

 

 

Fig. 32. Comparison of diagnostic performance between traditional and 

LLM-augmented workflows across key metrics: diagnostic time, initial 

accuracy, data fusion, and subjective-to-objective linkage. 

The resulting architecture is particularly well-suited for high-

throughput diagnostic imaging environments, allowing for rapid 

and accurate processing of large patient cohorts [360]. Furthermore, 

its optimized computational profile enables seamless adaptation to 

edge-compute settings, facilitating real-time analysis directly on 

medical devices or within local clinical networks, as demonstrated 

by our work on GPU-accelerated contour extraction from high-

volume medical images [9], [361]. This localized processing is vital 

for maintaining data privacy and minimizing network latency in 

critical care scenarios [362]. 

C. Diagnostic Suggestions with GenAI + Human Oversight 

Drawing directly from our UX-centric AI lifecycle framework 

[51], the integrated system utilizes Retrieval-Augmented 

Generation (RAG) to provide evidence-based diagnostic 

suggestions and potential treatment paths [363], [364]. This 

approach grounds the LLM's generative capabilities in 

authoritative, up-to-date medical knowledge bases (e.g., peer-

reviewed journals, clinical guidelines, drug formularies), 

significantly reducing the risk of hallucinations or inaccurate 

outputs [365], [366]. A study on clinical LLMs found that RAG-

enhanced systems reduced factual errors by over 50% compared to 

standalone LLMs, while increasing the proportion of evidence-

backed claims [367]. 

Crucially, outputs are designed for explainability, providing 

clinicians with transparent insights into the AI's reasoning. This 

includes generating natural language rationales that detail the 

evidence supporting a particular diagnosis, highlighting key textual 

features from patient data, and providing visual overlays like 

imaging heatmaps that pinpoint suspicious regions in medical 

scans that influenced the AI's assessment [368], [369]. All 

diagnostic suggestions are rigorously subjected to a physician-in-

the-loop (PITL) workflow, where human clinicians retain ultimate 

decision-making authority [38], [370]. This HITL model ensures 

clinical validation, allows for correction of AI errors, and facilitates 

continuous learning, consistent with the robust explainability and 

compliance layers integrated within our proposed LLM Design & 

Assurance (LLM-DA) stack and review systems [51], [52]. For 

instance, a recent pilot program for AI-assisted radiology 

interpretation reported that radiologists using an AI-augmented 

system achieved 5-10% higher diagnostic accuracy and a 20% 

reduction in reporting time for complex cases, attributing these 

gains to clearer AI-generated explanations [371]. This model 

supports high-stakes domains such as rapid triage and detection 

of infectious diseases like COVID-19, where our patented terahertz 

imaging methods [372], [373] offer ultra-resolution diagnostic 

capability. By connecting these advanced imaging techniques to 

semantic symptom interpretation, our framework enables rapid, AI-

assisted diagnostic capabilities for early intervention and public 

health management. 

D. Governance and Integrity in Clinical AI 

The deployment of AI in clinical settings demands an 

exceptionally stringent framework for governance and integrity, far 

exceeding the requirements for general digital platforms, due to the 

direct impact on patient health and safety [374], [375]. The societal 

and ethical implications of misdiagnosis or biased care necessitate 

robust mechanisms for accountability and transparency. We 

advocate for a direct extension of our proposed LLM Design & 

Assurance (LLM-DA) Stack to medical contexts, incorporating 

specialized components tailored to the unique regulatory and ethical 

landscape of healthcare AI [374], [375], [376], [377]. This involves: 

Embedding Granular Audit Trails and Provenance: 

Implementing immutable, cryptographically secure logs that record 

every AI-driven suggestion, the specific data inputs used (including 

versioning of models and training data), clinician interactions, and 

final patient outcomes [378], [379]. This ensures full traceability, 

accountability, and supports forensic analysis in case of adverse 

events, aligning with regulatory requirements for medical devices 

and AI systems [380], [381], [382]. For example, a system designed 

with such auditability could pinpoint the exact patient data, LLM 

version, and training data features that led to a specific diagnostic 

suggestion, proving adherence to clinical guidelines. 

Integrating Robust Federated Model Evaluation and 

Privacy-Preserving Analytics: Enabling collaborative model 

improvement across a network of geographically distributed 
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healthcare institutions without compromising individual patient 

data privacy [383], [384]. Techniques like federated learning and 

differential privacy allow models to learn from diverse real-world 

clinical data while keeping sensitive patient information localized 

and anonymized, addressing critical HIPAA and GDPR compliance 

challenges [385], [386]. Research shows that federated learning can 

improve model generalization across hospital systems by up to 

15% while maintaining patient data privacy [387]. 

Implementing Structured Error Attribution and Bias 

Mitigation for Medical AI: Developing mechanisms to 

systematically identify, categorize, and explain instances where the 

AI model performs suboptimally or exhibits bias, particularly 

regarding patient demographics, disease prevalence, or diagnostic 

accuracy across different populations [388], [389]. This requires 

continuous monitoring, a focus on fairness metrics relevant to 

clinical outcomes (e.g., equalized false positive/negative rates 

across groups), and clear protocols for model retraining and bias 

correction in medical datasets [390], [391], [392]. For instance, bias 

detection tools integrated into the LLM-DA stack could identify if 

a diagnostic LLM exhibits lower sensitivity for a particular disease 

in a specific demographic group, allowing for targeted model 

refinement [393]. 

Adherence to Medical Device Regulations and AI 

Guidelines: Ensuring the LLM-DA stack facilitates compliance 

with specific medical device regulations (e.g., FDA, CE mark for 

Software as a Medical Device - SaMD), as well as emerging AI-

specific guidelines from bodies like the WHO and EU AI Act, 

which classify medical AI as high-risk [394], [395], [396]. This 

layer automates the generation of documentation required for 

regulatory submissions and continuous post-market surveillance 

[397]. 

These enhanced governance features are fundamentally 

informed by our prior comprehensive surveys in AI governance 

[398] and specialized biomedical signal processing, which 

emphasizes the nuanced challenges of data interpretation and safety 

in healthcare [399]. As elaborated in Table 27 and illustrated in Fig. 

33, our extended LLM-DA components provide measurable gains 

in regulatory efficiency, clinical trust, and privacy preservation—

critical pillars for medical AI deployment. 

 

Fig. 33. Estimated performance and governance gains of LLM-DA stack 

extensions for clinical diagnostics, including blueprinting, red-teaming, 

compliance-as-code, explainability, runtime privacy, and bias auditing. 

Table 27: Core LLM-DA Stack Extensions for Clinical AI Integrity 

LLM-DA 

Component 

Extended 

Clinical AI 

Specifics 
Key Benefit 

Illustrative 

Impact 

LLM 

Blueprinting 

Medical 

knowledge graphs, 

clinical guideline 

integration 

Ensures 

factual consistency, 

reduces medical 

hallucinations 

50%+ 

reduction in non-

evidenced claims 

[367] 

Red-Team 

Simulation 

Adversarial medical 

prompts, synthetic 

bias injection 

Identifies 

vulnerabilities (e.g., 

misdiagnosis in 

rare cases, data 

drift) 

30% faster 

identification of 

edge-case failures 

[400] 

Compliance-

as-Code 

Automated alignment 

with SaMD 

regulations (FDA, 

CE, ISO 13485) 

Streamlined 

regulatory 

approvals, 

continuous 

adherence 

25-40% reduction 

in regulatory 

submission time 

[397] 

Explainability 

& Audit 

Interpretability for 

diagnostic rationales, 

visual heatmaps 

Fosters clinician 

trust, supports legal 

accountability 

20% improvement 

in clinician 

decision confidence 

[371] 

Secure 

Runtime 

Real-time patient data 

anonymization, 

device-level 

inferencing 

Enhances privacy, 

enables low-latency 

edge deployment 

Up to 95% data 

privacy 

preservation for 

local processing 

[362] 

Bias Auditing 

Demographic fairness 

checks, disease 

prevalence 

rebalancing 

Ensures equitable 

care delivery, 

reduces health 

disparities 

15% reduction in 

diagnostic bias 

across diverse 

patient groups 

[393] 

Note: Illustrative Impacts are based on projections from 

existing AI research in healthcare and general AI safety, pending 

specific clinical trial data. 

E. Future Outlook: Vision AI Meets LLM-Powered Medicine 

The convergence of advanced vision AI and LLM-powered 

reasoning heralds a transformative era for medical diagnostics and 

patient care. Our ongoing advancements, such as our GPU-

accelerated contour extraction patent [401], directly enable real-

time edge diagnosis. This technical capability paves the way for 

highly scalable LLM-assisted systems to be seamlessly integrated 

into low-power medical devices and to underpin emerging 

telehealth networks, democratizing access to expert-level 

diagnostic support globally [362], [402], [403]. We envision 

significant opportunities to extend this foundational work further 

into: 

Wearable Signal Fusion and Predictive Analytics: 

Developing robust AI models that fuse continuous data streams 

from wearable health sensors (e.g., ECG, PPG, accelerometer) with 

LLM-powered interpretation of subtle symptom variations. This 

could enable early disease detection, proactive intervention, and 

personalized health management [404], [405]. The global wearable 

medical device market is projected to reach $38.7 billion by 2030, 

driving significant demand for such integrated AI capabilities [406]. 

Multimodal Electronic Medical Record (EMR) Modeling: 

Creating sophisticated AI systems capable of processing and 

synthesizing information from heterogeneous EMR components—

including unstructured textual notes, structured lab results, genomic 

data, and diverse imaging modalities—to build a holistic, 

longitudinal understanding of patient health [407], [408]. Such 

comprehensive EMR modeling could lead to a 10-25% 

improvement in identifying at-risk patients for chronic 

conditions [409]. 
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Explainable Real-Time Triage and Clinical Decision 

Support Systems: Building transparent AI tools that assist 

healthcare professionals in prioritizing patient care and making 

informed decisions in real-time. These systems would not only 

provide recommendations but also generate clear, human-

interpretable explanations for their assessments, fostering trust and 

facilitating rapid, evidence-based interventions in critical care 

settings [410], [411]. The adoption of AI-driven clinical decision 

support systems is expected to result in a 30-40% reduction in 

physician burnout by automating routine tasks and providing 

quick access to information [412]. 

Digital Twin for Personalized Medicine: Leveraging LLMs 

and multimodal AI to create dynamic digital twins of patients, 

simulating disease progression and treatment responses based on 

their unique biological and clinical data, thereby enabling truly 

personalized medicine and optimizing therapeutic strategies [413], 

[414], [415]. This could reduce the cost and time of drug discovery 

and personalized treatment optimization by up to 60% [416]. 

This extension of the LLM integrity framework into clinical 

diagnostics underscores its broad applicability and essential role in 

ensuring responsible and trustworthy AI deployment across 

society's most critical sectors.  

To operationalize this envisioned framework in real-world 

clinical settings, we propose an implementation architecture. As 

shown in Fig. 34, this model emphasizes responsible LLM 

integration through four tightly coupled components: multimodal 

data mapping, dynamic patient modeling, physician-in-the-loop 

validation, and personalized treatment. This flow aligns with 

regulatory and clinical safety principles while enabling adaptive, 

high-precision diagnostics at scale. 

 

F. Institutional Research Directions: Advancing Responsible 

Clinical LLM Integration 

Beyond the conceptual framework for extending LLM integrity 

to clinical diagnostics, robust institutional research and 

development are critically needed to translate these principles into 

actionable systems. A growing trend in medical AI development 

focuses on ensuring that advanced models are not only performant 

but also interpretable, auditable, and compliant with stringent 

healthcare regulations [374], [375], [417]. This necessitates 

practical advancements in integrating diverse data modalities, 

developing privacy-preserving analytics, and fostering effective 

human-AI collaboration in high-stakes clinical settings [418], 

[419]. 

To address these evolving industry needs and research frontiers, 

we are actively exploring the responsible integration of large 

language models into clinical diagnostic workflows. Ongoing 

efforts include the development of sophisticated multimodal 

mapping algorithms that semantically link unstructured patient-

reported symptoms and historical narratives with objective imaging 

biomarkers, leveraging technologies such as terahertz (THz) 

imaging and GPU-accelerated processing [52], [361]. This research 

also prioritizes the implementation of privacy-preserving audit 

trails for AI-driven diagnostic suggestions and the design of 

explainable physician-in-the-loop (PITL) interfaces [420]. 

These interfaces are engineered to provide transparent rationales for 

AI assessments, thereby facilitating safe, informed clinical 

oversight and adherence to established medical guidelines [368], 

[38], [421]. This institutional research explicitly embodies a 

governance-by-design approach, directly aligning with the 

comprehensive LLM integrity framework and the proposed LLM 

Design & Assurance (LLM-DA) stack detailed throughout this 

paper [422], [423]. Future research is to be directed towards the 

development of dynamic patient modeling systems, including early-

stage digital twin prototypes, aimed at enabling highly 

personalized disease detection, prognosis, and adaptive treatment 

planning [413], [424]. These initiatives seek to bridge theoretical AI 

safety principles with practical, impactful healthcare applications, 

recognizing the unique challenges of real-world clinical 

deployment [425], [426]. 

 

 

Fig. 34. The envisioned Responsible Clinical LLM Integration 

framework. The diagram illustrates the four-pillar approach: (1) Multimodal 

Mapping of patient symptoms and imaging biomarkers, (2) Physician-in-the-

Loop Oversight with explainable interfaces and audit trails, (3) Dynamic 

Patient Modeling via early-stage digital twins, and (4) Personalized Treatment 

based on patient-specific insights. This flow prioritizes transparency, 

adaptability, and clinical safety in LLM deployment for diagnostics and 

decision support. 

Interestingly, unlike in engineering disciplines—where 

simulations and digital twins are standard practice for predicting 

system behaviors and optimizing performance before real-world 

implementation—medicine has historically lagged in adopting 

simulation-based decision support. This is paradoxical, given the 

high stakes of patient outcomes. The complexity of human biology, 

coupled with heterogeneous, unstructured data and strict regulatory 

requirements, has historically hindered the development of reliable 

digital twin models in healthcare [374], [375]. However, advances 

in large language models (LLMs) [350], [351], multimodal AI 

[356], [357], and high-performance computing (e.g., GPU-

accelerated processing) [52], [347] now enable dynamic, 

continuously updated digital twins that integrate structured and 

unstructured data from diverse clinical sources. These systems 

simulate disease progression and potential treatment responses 

[413], [414], bridging the interpretation gap in diagnosis and 

therapy planning [37], and offering a new paradigm for evidence-

based, personalized medicine. This addition not only reinforces the 
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LLM-DA stack’s relevance in clinical diagnostics [51] but also 

aligns with the broader vision of Virelya’s Responsible Clinical 

LLM Integration framework [Fig. 33], ensuring transparency, 

adaptability, and patient safety in the adoption of AI-driven medical 

solutions [422], [423]. This paradigm shift is illustrated in Fig. 35, 

which highlights the contrast between engineering and medicine in 

simulation adoption and demonstrates how AI-driven digital twins 

are finally enabling simulation-based decision support in clinical 

diagnostics. We are actively researching and developing these 

systems, contributing to the broader landscape of responsible AI 

adoption in high-stakes medical applications. 

 

 

Fig. 35. Simulation Analogy in Clinical Diagnostics. The figure contrasts 

the engineering domain—where simulations and digital twins are standard 

practice for predicting performance before deployment—with the medical 

field, which has historically lagged in adopting simulation-based decision 

support. Advances in LLMs, multimodal AI, and computational power are now 

bridging this gap, enabling dynamic digital twins for personalized, predictive 

medicine. We are actively exploring these AI-driven digital twin systems as part 

of ongoing efforts to advance responsible clinical AI integration. 

 

XII. CONCLUSION 

Large Language Models (LLMs) and generative AI systems are 

fundamentally reshaping digital platforms, marketplaces, and 

mobile app ecosystems at an unprecedented pace. Their remarkable 

capacity to accelerate development, automate content creation, and 

facilitate the drafting of complex documentation lowers technical 

and operational barriers for developers and contributors globally. 

This profound paradigm shift extends far beyond mobile 

environments; LLMs now underpin the generation of sophisticated 

fake product listings, deceptive AI plugins, and a wide array of 

synthetic content across various digital marketplaces, exposing 

systemic vulnerabilities in traditional review systems. 

This paper has thoroughly explored the dual-use nature of 

LLMs and generative AI, presenting both the immense 

opportunities for innovation and the escalating risks they introduce 

in the digital landscape. We've detailed how malicious actors 

weaponize LLMs to scale abuse, fraud, and non-compliance 

through tactics like polymorphic malware generation, deceptive 

storefront content, automated policy circumvention, and hyper-

personalized social engineering attacks. Crucially, we've outlined a 

comprehensive roadmap for how platforms can effectively counter 

these evolving threats with AI-augmented defenses. This includes 

advanced capabilities such as semantic code analysis for hidden 

threats, multimodal cross-validation of storefront claims against 

observed behavior, intelligent content moderation, and federated 

compliance auditing against complex global regulations. 

The key contributions of the end-to-end architecture and 

strategic playbook presented in this paper are summarized in Table 

28. 

 

Table 28. Key Contributions of the Proposed End-to-End Architecture 

and Strategic Playbook 

Component Why It’s Groundbreaking (Concise) 

Comprehensive 

Threat Modeling 

Systematically maps novel LLM-driven 

abuse vectors (e.g., polymorphic malware, 

synthetic content, AI social engineering, policy 

evasion). 

Proactive 

Defensive Strategy 

Reframes LLMs as proactive defensive tools 

for scalable integrity, shifting security from 

reactive to proactive. 

Operational 

System 

Architecture 

Designs a scalable human-AI hybrid system 

with intelligent triage, multimodal validation, 

SDK indexing, automated compliance, and 

transparent feedback. 

Global 

Compliance 

Framework 

Introduces tech for dynamic global 

compliance, including AI legal "diff engines," 

audit trails, and zero-shot mapping for evolving 

laws. 

Cross-

Functional 

Integration 

Provides a practical blueprint for integrating 

key teams (product, engineering, safety, legal, 

policy) for holistic, adaptive defense. 

Economic & 

Trust Impact 

Shows LLM integrity solutions cut costs, 

speed reviews, reduce fraud, and significantly 

boost user trust and developer satisfaction. 

Domain-

Specific Solutions 

Offers adaptable integrity workflows and 

insights for diverse digital sectors (app stores, e-

commerce, AI hubs, social media). 

Forward-

Looking Research 

Agenda 

Articulates actionable research in XAI, 

federated/on-device moderation, adversarial 

testing, developer education, and global 

standards. 

Human-

Centric AI 

Governance 

Emphasizes human oversight and ethics to 

manage false positives, mitigate algorithmic bias, 

and ensure fairness in AI-driven decisions. 

 

Beyond digital platforms, this framework uniquely extends its 

comprehensive integrity blueprint to high-stakes clinical 

diagnostics and personalized medicine. We detailed how advanced 

LLMs, coupled with multimodal AI, can bridge the critical 

"interpretation gap" in diagnosis by seamlessly mapping patient 

narratives to objective biomedical data, from subjective symptoms 

to advanced imaging biomarkers. This integration facilitates more 

accurate and efficient diagnostic suggestions, always under rigorous 

physician-in-the-loop oversight. Crucially, the paper introduced the 

burgeoning concept of digital twins for personalized medicine, 

envisioning dynamic simulations of disease progression and 

treatment responses to optimize therapeutic strategies and 

accelerate drug discovery. This expansion underscores the 

framework's adaptability and paramount importance in ensuring the 



45 

 

trustworthiness, safety, and regulatory compliance of AI in critical 

sectors impacting human life, leveraging the same principles of 

explainability, auditability, and bias mitigation established for 

broader digital ecosystems. 

Through in-depth case studies of industry leaders like Google 

Play and Apple App Store, we demonstrated that LLM-powered 

safety systems are not merely theoretical but are already actively in 

production, significantly shaping the next generation of platform 

trust infrastructure. These initiatives highlight the practical viability 

of AI-assisted review, real-time threat detection, and proactive 

developer engagement. Our discussion identified critical emerging 

opportunities in explainable AI (XAI) for transparent decision-

making, privacy-preserving federated review pipelines, and 

adaptive multi-agent compliance parsing. We've argued that 

responsible, transparent, and continuously adaptive deployment of 

LLMs, coupled with robust human oversight, can empower 

platforms to scale their enforcement capabilities, proactively 

counter evolving threats, and preserve trust across rapidly 

advancing digital ecosystems. 

To succeed and thrive in this LLM-driven era, platforms must 

adopt a multi-faceted strategic approach: 

Integrate LLMs deeply across every stage of content intake, 

review, moderation, compliance, and post-deployment monitoring 

lifecycles, moving beyond ad-hoc applications to systemic 

adoption. 

Align product, engineering, Trust & Safety operations, 

policy, and legal teams within cohesive cross-functional 

platform integrity frameworks. This fosters a culture of shared 

responsibility and enables a holistic, proactive defense posture. 

Rigorously measure performance through a comprehensive 

suite of operational metrics, focusing not only on efficiency but also 

on precision, recall, false positive/negative rates, transparency, 

developer feedback, and regulatory alignment to ensure fairness and 

continuous improvement. 

Invest continuously in explainability (XAI) to foster 

developer and user trust, adaptive threat detection to stay ahead 

in the AI arms race, and a global governance strategy that scales 

across diverse AI-enabled marketplaces and evolving regulatory 

landscapes. 

To our knowledge, this paper provides the first comprehensive 

strategy roadmap that unifies insights from mobile app stores, Gen-

AI marketplaces, and digital commerce platforms under a common 

framework for LLM-augmented integrity enforcement. By 

integrating nuanced understanding of LLM capabilities, real-world 

case studies, and a deep appreciation for the complex regulatory 

environment, this paper bridges technical and organizational silos 

to propose an operational blueprint for the AI era.  This synthesis 

across app stores, Gen-AI platforms, and digital commerce 

represents a new paradigm in platform integrity. As AI-generated 

content and LLM-assisted development continue to scale, so too 

must the safeguards that govern them. This paper provides not just 

a technical foundation, but an operational call to action—urging 

platforms, researchers, and regulators to adopt a shared, adaptive, 

and cross-domain response to platform safety and human well-

being in the age of generative AI. 

As LLMs continue to reshape how content, apps, and digital 

interactions are created, reviewed, and regulated, platforms that 

proactively invest in scalable, explainable, and cross-functionally 

integrated safety architectures will be best positioned to thrive in a 

rapidly evolving trust landscape, ensuring long-term sustainability 

and user confidence. 
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